Computational Information Games A minitutorial Part II

Houman Owhadi

ICERM June 5, 2017

[H. Owhadi and C. Scovel. Universal Scalable Robust Solvers from Computational Information Games and fast eigenspace adapted Multiresolution Analysis 2017. arXiv:1703.10761]

DARPA EQUiPS / AFOSR award no FA9550-16-1-0054 (Computational Information Games)

Question

Can we design a linear solver with some degree of universality? (that could be applied to a large class of linear operators)

Motivation

There are (nearly) as many linear solvers as linear systems.
Number of google scholar references to "linear solvers": 447,000

Not clear that this can be done
"Of course no one method of approximation
of a 'linear operator' can be universal."
[Sard, 1967. Optimal approximation. Journal of Functional Analysis]

Arthur Sard (1909-1980)

$$
\left\{\begin{array}{rr}
-\operatorname{div}(a \nabla u)=g, & x \in \Omega, \\
u=0, & x \in \partial \Omega,
\end{array}\right.
$$

Multigrid Methods

Multigrid: [Fedorenko, 1961, Brandt, 1973, Hackbusch, 1978]

Multiresolution/Wavelet based methods

[Brewster and Beylkin, 1995, Beylkin and Coult, 1998, Averbuch et al., 199\&
[Beylkin, Coifman, Rokhlin, 1992] [Engquist, Osher, Zhong, 1992]
[Alpert, Beylkin, Coifman, Rokhlin, 1993]
[Cohen, Daubechies, Feauveau. 1992]
[Bacry, Mallat, Papanicolaou. 1993]

- Linear complexity with smooth coefficients

Problem Severely affected by lack of smoothness

Robust/Algebraic multigrid

[Mandel et al., 1999,Wan-Chan-Smith, 1999,
Xu and Zikatanov, 2004, Xu and Zhu, 2008], [Ruge-Stüben, 1987]
[Panayot - 2010]
Stabilized Hierarchical bases, Multilevel preconditioners
[Vassilevski - Wang, 1997, 1998]
[Panayot - Vassilevski, 1997]
[Chow - Vassilevski, 2003]
[Aksoylu- Holst, 2010]

- Some degree of robustness

Low Rank Matrix Decomposition methods

Fast Multipole Method: [Greengard and Rokhlin, 1987]
Hierarchical Matrix Method: [Hackbusch et al., 2002]
[Bebendorf, 2008]:

$$
N \ln ^{2 d+8} N \text { complexity }
$$

To achieve grid-size accuracy in L^{2}-norm

Hierarchical numerical homogenization method

[H. Owhadi, Multigrid with rough coefficients and Multiresolution operator decomposition from Hierarchical Information Games. SIAM Review, 2017]
First
Solve
$\mathcal{O}\left(N \ln ^{3 d} N\right)$
Subsequent solves
$\mathcal{O}\left(N \ln ^{d+1} N\right)$
To achieve grid-size accuracy in H^{1}-norm

$A x=b$

Sparse matrix Laplacians

Sparsified Cholesky and Multigrid Solvers for Connection Laplacians: [Kyng, Lee, Peng, Sachdeva, Spielman , 2016]
Approximate Gaussian Elimination: [Kyng and Sachdeva, 2016]

$$
N \text { poly } \log (N) \text { complexity }
$$

Structured sparse matrices (SDD matrices)

Graph sparsification: [Spielman and Teng, 2004]
Diagonally dominant linear systems: [Spielman and Teng , 2014]
[Koutis, Miller, Gary and Peng, 2014]
[Cohen, Kyng, Miller, Pachocki, Peng, Rao, and Xu, 2014]
[Kelner, Orecchia, Sidford, Zhu, 2013]

The problem

\mathcal{T} : Continuous linear bijection

$$
\mathcal{B} \xrightarrow{\mathcal{T}} \mathcal{B}^{*}
$$

We want to approximate \mathcal{T}^{-1} and all its eigen-subpaces in near-linear complexity

- $[\mathcal{T} u, v]=[\mathcal{T} v, u]$,

For $u, v \in \mathcal{B}, \quad[\mathcal{T} u, u] \geq 0$

$$
\|u\|^{2}:=[\mathcal{T} u, u]
$$

$(\mathcal{B},\|\cdot\|)$: separable Banach space

Example

$$
\begin{gathered}
\left\{\begin{array}{r}
-\operatorname{div}(a \nabla u)=g, \\
u=0, \\
u \in \partial \Omega, \\
\mathcal{T}
\end{array}=-\operatorname{div}(a \nabla \cdot)\right. \\
\left(H_{0}^{1}(\Omega),\|\cdot\|_{H_{0}^{1}(\Omega)}\right) \xrightarrow{-\operatorname{div}(a \nabla \cdot)}\left(H^{-1}(\Omega),\|\cdot\|_{H^{-1}(\Omega)}\right) \\
\mathcal{B}:=H_{0}^{1}(\Omega) \\
\|u\|^{2}:=\int_{\Omega}(\nabla u)^{T} a \nabla u
\end{gathered}
$$

Example

$\mathcal{L} u=g$
\mathcal{L} : arbitrary continuous linear bijection
$\left(H_{0}^{s}(\Omega),\|\cdot\|_{H_{0}^{s}(\Omega)}\right) \xrightarrow{\mathcal{L}}\left(H^{-s}(\Omega),\|\cdot\|_{H^{-s}(\Omega)}\right)$
\mathcal{L} : Symmetric and positive

- $[\mathcal{L} u, v]=[\mathcal{L} v, u]$,
- $[\mathcal{L} u, u] \geq 0$
$\mathcal{B}:=H_{0}^{s}(\Omega)$
$\mathcal{T}=\mathcal{L}$

$$
\|u\|^{2}:=[\mathcal{L} u, u]
$$

Example

$$
\mathcal{L} u=g \Leftrightarrow \mathcal{L}^{*} \mathcal{L} u=\mathcal{L}^{*} g
$$

\mathcal{L} : arbitrary continuous linear bijection
$\left(H_{0}^{s}(\Omega),\|\cdot\|_{H_{0}^{s}(\Omega)}\right) \xrightarrow{\mathcal{L}}\left(L^{2}(\Omega),\|\cdot\|_{L^{2}(\Omega)}\right)$
$\mathcal{B}:=H_{0}^{s}(\Omega)$
$\mathcal{T}=\mathcal{L}^{*} \mathcal{L}$

$$
\|u\|:=\|\mathcal{L} u\|_{L^{2}(\Omega)}
$$

Example

$A x=b$

$A: N \times N$ symmetric postive definite matrix

$$
\begin{aligned}
& \mathcal{B}:=\mathbb{R}^{N} \\
& \mathcal{T}=A \\
& \quad\|x\|^{2}:=x^{T} A x
\end{aligned}
$$

Example

$A x=b \Leftrightarrow A^{T} A x=A^{T} b$

A: $N \times N$ invertible matrix

$$
\begin{aligned}
& \mathcal{B}:=\mathbb{R}^{N} \\
& \mathcal{T}=A^{T} A
\end{aligned}
$$

$$
\|x\|^{2}:=|A x|^{2}
$$

\mathcal{B}

 \mathcal{B}^{*}

$$
\|u\|^{2}:=[\mathcal{T} u, u]
$$

Hierarchy of measurement functions

$$
\begin{aligned}
& \phi_{i}^{(k)} \in \mathcal{B}^{*} \text { with } k \in\{1, \ldots, q\} \\
& \quad \phi_{i}^{(k)}=\sum_{j} \pi_{i, j}^{(k, k+1)} \phi_{j}^{(k+1)}
\end{aligned}
$$

[Multigrid with rough coefficients and Multiresolution operator decomposition from Hierarchical Information Games. H. Owhadi. SIAM Review, 59(1), 99149, 2017. arXiv:1503.03467]

Example

$\mathcal{B}=H_{0}^{s}(\Omega)$

$\phi_{i}^{(k)}$: Weighted indicator functions of a hierarchical nested partition of Ω of resolution 2^{-k}

Example $\mathcal{B}=H_{0}^{s}(\Omega$

$\left(\phi_{i, \alpha}^{(k)}\right)_{\alpha \in \beth}$: orthonormal basis functions of $\mathcal{P}_{s-1}\left(\tau_{i}^{(k)}\right)$
$\mathcal{P}_{s-1}\left(\tau_{i}^{(k)}\right)$: polynomials of degree at most $s-1$

[H. Owhadi and C. Scovel. Universal Scalable Robust Solvers from Computational Information Games and fast eigenspace adapted Multiresolution Analysis 2017. arXiv:1703.10761]
T. Y. Hou and P. Zhang. Sparse operator compression of higher order elliptic operators with rough coefficients. To appear, 2017.

$$
\text { Example } \quad \mathcal{B}=H_{0}^{s}(\Omega) \quad s>d / 2
$$

$\phi_{i}^{(k)}$: Subsampled delta Dirac functions

0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0

[Schäfer, Sullivan, Owhadi. 2017]: Compression, inversion, and approximate PCA of dense kernel matrices at near-linear computational complexity.
[H. Owhadi and C. Scovel. Universal Scalable Robust Solvers from Computational Information Games and fast eigenspace adapted Multiresolution Analysis 2017. arXiv:1703.10761]

Player I

Player II

Chooses
$u \in \mathcal{B}$

$$
\begin{array}{r}
\text { Sees }\left[\phi_{i}^{(k)}, u\right], i \in \mathcal{I}_{k} \\
\text { Must predict } \\
u \text { and }\left[\phi_{j}^{(k+1)}, u\right], j \in \mathcal{I}_{k+1}
\end{array}
$$

Example

Player I
 $$
B=H_{0}^{1}(\Omega)
$$
 Player II

Chooses

$u \in H_{0}^{1}(\Omega)$
Sees $\left\{\int_{\Omega} u \phi_{i}^{(k)}, i \in \mathcal{I}_{k}\right\}$
Must predict
u and $\left\{\int_{\Omega} u \phi_{j}^{(k+1)}, j \in \mathcal{I}_{k+1}\right\}$

Player Il's bets

$$
u^{(k)}:=\mathbb{E}\left[\xi \mid\left[\phi_{i}^{(k)}, \xi\right]=\left[\phi_{i}^{(k)}, u\right], i \in \mathcal{I}_{k}\right]
$$

$$
\mathcal{F}^{(k)}=\sigma\left(\left[\phi_{i}^{(k)}, \xi\right], i \in \mathcal{I}_{k}\right)
$$

$$
\xi^{(k)}=\mathbb{E}\left[\xi \mid \mathcal{F}^{(k)}\right]
$$

$\xi^{(k)}$: Martingale
$\xi^{(k)}$: Converging a.s.
$\xi^{(k+1)}-\xi^{(k)}$: Uncorrelated (therefore independent)

Example

$$
\mathcal{B}=H_{0}^{1}(\Omega) \quad\|u\|^{2}=\int_{0}(\nabla u)^{T} a \nabla v
$$

$$
\left\{\begin{array}{rrr}
-\operatorname{div}(a \nabla u) & =g, & x \in \Omega, \\
u & =0, & x \in \partial \Omega,
\end{array}\right.
$$

Accuracy of the recovery

Theorem

$$
\left\|u-u^{(k)}\right\| \leq \frac{H^{k}}{\lambda_{\min }(a)}\|g\|_{L^{2}(\Omega)}
$$

$$
\phi_{i}^{(k)}=1_{\tau_{i}^{(k)}} \quad \operatorname{diam}\left(\tau_{i}^{(k)}\right) \leq H^{k}
$$

Energy content

$$
\left\{\begin{aligned}
-\operatorname{div}(a \nabla u) & =g, \quad x \in \Omega \\
u & =0, \quad x \in \partial \Omega
\end{aligned}\right.
$$

$$
g \in C^{\infty}(\Omega)
$$

If r.h.s. is regular we don't need to compute all subbands

Energy content

$$
\left\{\begin{aligned}
-\operatorname{div}(a \nabla u)=g, & x \in \Omega, \\
u & =0, \\
x \in \partial \Omega, & g=\delta\left(x-x_{0}\right)
\end{aligned}\right.
$$

$$
u^{(k)}=\sum_{i}\left[\phi_{i}^{(k)}, u\right] \psi_{i}^{(k)}
$$

Gamblets

$$
\psi_{i}^{(k)}=\mathbb{E}\left[\xi \mid\left[\phi_{l}^{(k)}, \xi\right]=\delta_{i, l}, l \in \mathcal{I}_{k}\right]
$$

Example

$$
\mathcal{B}=H_{0}^{1}(\Omega)
$$

$$
\|u\|^{2}=\int_{\Omega}(\nabla u)^{T} a \nabla u
$$

$$
\phi_{i}^{(k-1)}=\sum_{j} \pi_{i, j}^{(k-1, k)} \phi_{j}^{(k)}
$$

0	0	$1 / 2$	$1 / 2$
0	0	$1 / 2$	$1 / 2$
0	0	0	0
0	0	0	0

Gamblets

$$
\psi_{i}^{(k)}=\mathbb{E}\left[\xi \mid\left[\phi_{l}^{(k)}, \xi\right]=\delta_{i, l}, l \in \mathcal{I}_{k}\right]
$$

Gamblets are nested

$$
\psi_{i}^{(k)}=\sum_{j} R_{i, j}^{(k, k+1)} \psi_{j}^{(k+1)}
$$

$$
\begin{array}{r}
\psi_{i}^{(k)}=\mathbb{E}\left[\mathbb{E}\left[\xi \mid \mathcal{F}_{k+1}\right] \mid\left[\phi_{l}^{(k)}, \xi\right]=\delta_{i, l}, l \in \mathcal{I}_{k}\right] \\
\mathbb{E}\left[\xi \mid \mathcal{F}_{k+1}\right]=\sum_{j}\left[\phi_{j}^{(k+1)}, \xi\right] \psi_{j}^{(k+1)}
\end{array}
$$

$$
R_{i, j}^{(k, k+1)}=\mathbb{E}\left[\left[\phi_{j}^{(k+1)}, \xi\right]\left[\phi_{l}^{(k)}, \xi\right]=\delta_{i, l}, l \in \mathcal{I}_{k}\right]
$$

Interpolation/Prolongation operator

Player I

Player II

Chooses
$u \in \mathcal{B}$
$\operatorname{Sees}\left[\phi_{i}^{(k)}, u\right], i \in \mathcal{I}_{k}$
Must predict

$$
\left[\phi_{j}^{(k+1)}, u\right], j \in \mathcal{I}_{k+1}
$$

Optimal bet of Player II on the value of $\left[\phi_{j}^{(k+1)}, u\right]$

$$
\sum_{i}\left[\phi_{i}^{(k)}, u\right] R_{i, j}^{(k, k+1)}
$$

Example

 $\mathcal{B}=H_{0}^{1}(\Omega)$ $\left\{\begin{array}{rr}-\operatorname{div}(a \nabla u)=g, & x \in \Omega, \\ u=0, & x \in \partial \Omega,\end{array}\right.$$$
R_{i, j}^{(k)}=\mathbb{E}\left[\int_{\Omega} \xi(y) \phi_{j}^{(k+1)}(y) d y \mid \int_{\Omega} \xi(y) \phi_{l}^{(k)}(y) d y=\delta_{i, l}, l \in \mathcal{I}_{k}\right]
$$

$R_{i, j}^{(k)}$ Your best bet on the value of $\int_{\tau_{j}^{(k+1)}} u$ given the information that
$\int_{\tau_{i}^{(k)}} u=1$ and $\int_{\tau_{l}} u=0$ for $l \neq i$

$$
\mathcal{B} \quad \mathcal{T}
$$

$$
\mathcal{B}^{*}
$$

$$
\|u\|^{2}:=[\mathcal{T} u, u]
$$

Hierarchy of measurement functions

$$
\begin{aligned}
\phi_{i}^{(k)} & \in \mathcal{B}^{*} \text { with } k \in\{1, \ldots, q\} \\
& \phi_{i}^{(k)}=\sum_{j} \pi_{i, j}^{(k, k+1)} \phi_{j}^{(k+1)}
\end{aligned}
$$

Hierarchy of gamblets

$$
\psi_{i}^{(k)}=\sum_{j \in \mathcal{I}^{(k)}} \Theta_{i, j}^{(k),-1} \mathcal{T}^{-1} \phi_{j}^{(k)}
$$

$\Theta_{i, j}^{(k)}:=\left[\phi_{i}^{(k)}, \mathcal{T}^{-1} \phi_{j}^{(k)}\right]$

Biorthogonal system

$$
\left[\phi_{j}^{(k)}, \psi_{i}^{(k)}\right]=\delta_{i, j}
$$

$$
\mathfrak{V}^{(k)}:=\operatorname{span}\left\{\psi_{i}^{(k)} \mid i \in \mathcal{I}^{(k)}\right\}
$$

Theorem

The $\langle\cdot, \cdot\rangle$ orthogonal projection of $u \in \mathcal{B}$ onto $\mathfrak{V}^{(k)}$ is

$$
u^{(k)}=\sum_{i \in \mathcal{I}^{(k)}}\left[\phi_{i}^{(k)}, u\right] \psi_{i}^{(k)}
$$

Measurement functions are nested

$$
\phi_{i}^{(k)}=\sum_{j} \pi_{i, j}^{(k, k+1)} \phi_{j}^{(k+1)}
$$

Gamblets are nested

$$
\psi_{i}^{(k)}=\sum_{j \in \mathcal{I}(k+1)} R_{i, j}^{(k, k+1)} \psi_{j}^{(k+1)}
$$

Orthogonalized gamblets

$$
\chi_{i}^{(k)}:=\sum_{j \in \mathcal{I}(k)} W_{i, j}^{(k)} \psi_{j}^{(k)}
$$

For $k \geq 2 \quad W^{(k)}: \mathcal{J}^{(k)} \times \mathcal{I}^{(k)}$ matrix such that

- $\operatorname{Img}\left(W^{(k), T}\right)=\operatorname{Ker}\left(\pi^{(k-1, k)}\right)$ and $W^{(k)}\left(W^{(k)}\right)^{T}=J^{(k)}$

$$
\chi_{i}^{(k)}:=\sum_{j \in \mathcal{I}^{(k)}} W_{i, j}^{(k)} \psi_{j}^{(k)}
$$

Operator adapted MRA

$$
\begin{aligned}
\mathfrak{V}^{(k)} & :=\operatorname{span}\left\{\psi_{i}^{(k)} \mid i \in \mathcal{I}^{(k)}\right\} \\
\mathfrak{J}^{(k)} & :=\operatorname{span}\left\{\chi_{i}^{(k)} \mid i \in \mathcal{I}^{(k)}\right\}
\end{aligned}
$$

Theorem

$$
\begin{aligned}
& \mathfrak{V}^{(k)}=\mathfrak{V}^{(k-1)} \oplus \mathfrak{W}^{(k)} \\
& \mathcal{B}=\mathfrak{V}^{(1)} \oplus \mathfrak{W}^{(2)} \oplus \mathfrak{W}^{(3)} \oplus \ldots
\end{aligned}
$$

$u^{(k)}-u^{(k-1)}$: The $\langle\cdot, \cdot\rangle$ orthogonal projection of $u \in \mathcal{B}$ onto $\mathfrak{W}^{(k)}$

$$
\begin{array}{ll}
\mathcal{B} \longrightarrow \mathcal{T} & \mathcal{B}^{*} \\
u \longrightarrow & g
\end{array}
$$

$$
\mathcal{T} u=g
$$

Theorem $\quad u=u^{(1)}+\cdots+\left(u^{(k)}-u^{(k-1}\right)+\cdots$

$$
\begin{gathered}
u^{(k)}-u^{(k-1)}=\sum_{i \in \mathcal{I}(k)} w_{i}^{(k)} \chi_{i}^{(k)} \\
B^{(k)} w^{(k)}=g^{(k)} \\
g_{i}^{(k)}=\left[g, \chi_{i}^{(k)}\right] \quad B_{i, j}^{(k)}=\left\langle\chi_{i}^{(k)}, \chi_{j}^{(k)}\right\rangle
\end{gathered}
$$

Energy content

$$
\left\{\begin{aligned}
-\operatorname{div}(a \nabla u) & =g, \quad x \in \Omega \\
u & =0, \quad x \in \partial \Omega
\end{aligned}\right.
$$

$$
g \in C^{\infty}(\Omega)
$$

If r.h.s. is regular we don't need to compute all subbands

Energy content

$$
\left\{\begin{aligned}
-\operatorname{div}(a \nabla u)=g, & x \in \Omega, \\
u & =0, \\
x \in \partial \Omega, & g=\delta\left(x-x_{0}\right)
\end{aligned}\right.
$$

Operator adapted wavelets

First Generation Wavelets: Signal and imaging processing
[Mallat, 1989] [Daubechies, 1990]
[Coifman, Meyer, and Wickerhauser, 1992]
First Generation Operator Adapted Wavelets (shift and scale invariant) [Cohen, Daubechies, Feauveau. Biorthogonal bases
of compactly supported wavelets. 1992]
[Beylkin, Coifman, Rokhlin, 1992] [Engquist, Osher, Zhong, 1992]
[Alpert, Beylkin, Coifman, Rokhlin, 1993] [Jawerth, Sweldens, 1993]
[Dahlke, Weinreich, 1993] [Bacry, Mallat, Papanicolaou. 1993]
[Bertoluzza, Maday, Ravel, 1994] [Vasilyev, Paolucci, 1996]
[Dahmen, Kunoth, 2005] [Stevenson, 2009]
Lazy wavelets (Multiresolution decomposition of solution space)
[Yserentant. Multilevel splitting, 1986]
[Bank, Dupont, Yserentant. Hierarchical basis multigrid method. 1988]

Operator adapted wavelets

Second Generation Operator Adapted Wavelets
[Sweldens. The lifting scheme, 1998] [Dorobantu - Engquist. 1998]
[Vassilevski, Wang. Stabilizing the hierarchical basis, 1997]
[Carnicer, Dahmen, Peña, 1996] [Lounsbery, DeRose, Warren, 1997]
[Vassilevski, Wang. Stabilizing hierarchical basis, 1997-1998]
[Barinka, Barsch, Charton, Cohen, Dahlke, Dahmen, Urban, 2001]
[Cohen, Dahmen, DeVore, 2001] [Chiavassa, Liandrat, 2001]
[Dahmen, Kunoth, 2005] [Schwab, Stevenson, 2008]
[Sudarshan, 2005] [Engquist, Runborg, 2009] [Yin, Liandrat, 2016]

We want

1. Scale-orthogonal wavelets with respect to operator scalar product (leads to block-diagonalization)
2. Operator to be well conditioned within each subband
3. Wavelets need to be localized (compact support or exp. decay)

Eigenspace adapted MRA

$$
A_{i, j}^{(k)}=\left\langle\psi_{i}^{(k)}, \psi_{j}^{(k)}\right\rangle \quad B_{i, j}^{(k)}=\left\langle\chi_{i}^{(k)}, \chi_{j}^{(k)}\right\rangle
$$

Theorem Under regularity of measurement functions

$$
\frac{1}{C} H^{-2(k-1)} J^{(k)} \leq B^{(k)} \leq C H^{-2 k} J^{(k)}
$$

$$
\operatorname{Cond}\left(B^{(k)}\right) \leq C H^{-2}
$$

$$
\begin{aligned}
\frac{1}{C} I^{(1)} & \leq A^{(1)} \leq C H^{-2} I^{(1)} \\
& \operatorname{Cond}\left(A^{(1}\right) \leq C H^{-2}
\end{aligned}
$$

High contrast

Low $^{2}{ }^{4}{ }^{4}{ }^{5}{ }^{5}$.

Wannier functions

[Wannier. Dynamics of band electrons in electric and magnetic fields. 1962]
[Kohn. Analytic properties of Bloch waves and Wannier functions, 1959]
[Marzari, Vanderbilt. Maximally localized generalized Wannier functions for composite energy bands. 1997] [E, Tiejun, Jianfeng. Localized bases of eigensubspaces and operator compression, 2010]
[Vidvuds, Lai, Caflisch, Osher, Compressed modes for variational problems in mathematics and physics, 2013]
[Owhadi, Multiresolution operator decomposition, SIREV 2017]
[Owhadi, Zhang, gamblets for hyperbolic and parabolic PDEs, 2016]
[Hou, Qin, Zhang, A sparse decomposition
of low rank symmetric positive semi-definite matrices, 2016]
[Hou, Zhang, Sparse operator compression of elliptic operators. 2017]

$(\mathcal{B},\|\cdot\|)$

\mathcal{T}

$$
\rightarrow\left(\mathcal{B}^{*},\|\cdot\|_{*}\right)
$$

Regularity Conditions

For some $H \in(0,1)$ and $C_{\Phi}>0$

1. $|x| \leq C_{\Phi} H^{-k}\|\phi\|_{*}$
for $\phi \in\left\{\sum_{i \in \mathcal{I}^{(k)}} x_{i} \phi_{i}^{(k)}\right\}$
2. $\|\phi\|_{*} \leq C_{\Phi} H^{k}|x|$
for $\phi \in\left\{\sum_{i \in \mathcal{I}^{(k+1)}} x_{i} \phi_{i}^{(k+1)} \mid x \in \operatorname{Ker}\left(\pi^{(k, k+1)}\right)\right\}$
Conditions are covariant under norm equivalence

Example $\mathcal{T}=\mathcal{L}$

$\left(H_{0}^{s}(\Omega),\|\cdot\|_{H_{0}^{s}(\Omega)}\right) \xrightarrow{\mathcal{L}}\left(H^{-s}(\Omega),\|\cdot\|_{H^{-s}(\Omega)}\right)$

Regularity Conditions

For some $H \in(0,1)$ and $C_{s}>0$

1. $|x| \leq C_{s} H^{-k}\|\phi\|_{H^{-s}(\Omega)}$
for $\phi \in\left\{\sum_{i \in \mathcal{I}^{(k)}} x_{i} \phi_{i}^{(k)}\right\}$
2. $\|\phi\|_{H^{-s}(\Omega)} \leq C_{s} H^{k}|x|$
for $\phi \in\left\{\sum_{i \in \mathcal{I}^{(k+1)}} x_{i} \phi_{i}^{(k+1)} \mid x \in \operatorname{Ker}\left(\pi^{(k, k+1)}\right)\right\}$

Example $s=1$
$H=\frac{1}{2}$

$\phi_{i}^{(k)}$: Weighted indicator functions of a hierarchical nested partition of Ω of resolution 2^{-k}

Example

$s \geq 2$ $H=\frac{1}{2^{s}}$
$\left(\phi_{i, \alpha}^{(k)}\right)_{\alpha \in \beth}$: orthonormal basis functions of $\mathcal{P}_{s-1}\left(\tau_{i}^{(k)}\right)$
$\mathcal{P}_{s-1}\left(\tau_{i}^{(k)}\right)$: polynomials of degree at most $s-1$

$\tau_{i}^{(k)}:$ Hierarchical nested partition of Ω of resolution 2^{-k}
[H. Owhadi and C. Scovel. Universal Scalable Robust Solvers from Computational Information Games and fast eigenspace adapted Multiresolution Analysis 2017. arXiv:1703.10761]
T. Y. Hou and P. Zhang. Sparse operator compression of higher order elliptic operators with rough coefficients. To appear, 2017.

Example

$H=\frac{1}{2^{s}}$
[Schäfer, Sullivan, Owhadi. 2017]: Compression, inversion, and approximate PCA of dense kernel matrices at near-linear computational complexity.
$\phi_{i}^{(k)}$: Weighted indicator functions of a
hierarchical nested partition of Ω of resolution 2^{-k}

$$
s>d / 2
$$

$\phi_{i}^{(k)}$: Subsampled delta Dirac functions

\bullet	\bullet	\bullet
\bullet	\bullet	\bullet
\bullet	\bullet	\bullet

0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	\circ	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0

Example $\quad \mathcal{B}:=\mathbb{R}^{N} \quad\|x\|^{2}:=x^{T} A x$
A: $N \times N$ symmetric $\|x\|_{*}^{2}:=x^{T} A^{-1} x$ postive definite matrix $\|x\|_{0}^{2}:=x^{T} x$

$$
\phi_{i}^{(q)}=e_{i} \quad \pi^{(k, k+1)}\left(\pi^{(k, k+1)}\right)^{T}=I^{(k)}
$$

Regularity Conditions $\pi^{(k, q)}=\pi^{(k, k+1)} \cdots \pi^{(q-1, q)}$
For some $H \in(0,1)$ and $C>0$

1. $\frac{1}{C \sqrt{\lambda_{\min }(A)}} H^{k} \leq \inf _{x \in \operatorname{Img}(\pi(q, k))} \frac{\sqrt{x^{T} A^{-1} x}}{|x|}$
2. $\sup _{x \in \operatorname{Ker}\left(\pi^{(k, q)}\right)} \frac{\sqrt{x^{T} A^{-1} x}}{|x|} \leq \frac{C}{\sqrt{\lambda_{\min }(A)}} H^{k}$

Conditions are covariant under quadratic form equivalence

Regularity Conditions on Primal Space

For some $H \in(0,1)$ and $C_{\Phi}>0$

1. $C_{\Phi}^{-1} H^{k} \frac{\sqrt{x^{T} A x}}{\lambda_{\min }(A)} \leq|x|$
for $x \in \operatorname{Img}\left(\pi^{(q, k)}\right)$ and $k \in\{1, \ldots, q\}$.
2. $\inf _{y \in \mathbb{R}^{\mathcal{I}^{(k)}}}\left|z-\pi^{(q, k)} y\right| \leq C_{\Phi} H^{k} \frac{\sqrt{z^{T} A z}}{\lambda_{\min }(A)}$ for $z \in \mathbb{R}^{N}$ and $k \in\{1, \ldots, q\}$.

1: For $i \in \mathcal{I}^{(q)}, \psi_{i}^{(q)}=\varphi_{i}$
2: For $i \in \mathcal{I}^{(q)}, g_{i}^{(q)}=\left[g, \psi_{i}^{(q)}\right]$
3: For $i, j \in \mathcal{I}^{(q)}, A_{i, j}^{(q)}=\left\langle\psi_{i}^{(q)}, \psi_{j}^{(q)}\right\rangle$
4: for $k=q$ to 2 do
5: $\quad B^{(k)}=W^{(k)} A^{(k)} W^{(k), T}$
6: $\quad w^{(k)}=B^{(k),-1} W^{(k)} g^{(k)}$
7: \quad For $i \in \mathcal{J}^{(k)}, \chi_{i}^{(k)}=\sum_{j \in \mathcal{I}^{(k)}} W_{i, j}^{(k)} \psi_{j}^{(k)}$
8: $\quad u^{(k)}-u^{(k-1)}=\sum_{i \in \mathcal{J}^{(k)}} w_{i}^{(k)} \chi_{i}^{(k)}$
9: $\quad D^{(k, k-1)}=-B^{(k),-1} W^{(k)} A^{(k)} \bar{\pi}^{(k, k-1)}$
10: $\quad R^{(k-1, k)}=\bar{\pi}^{(k-1, k)}+D^{(k-1, k)} W^{(k)}$
11: $\quad A^{(k-1)}=R^{(k-1, k)} A^{(k)} R^{(k, k-1)}$
12: \quad For $i \in \mathcal{I}^{(k-1)}, \psi_{i}^{(k-1)}=\sum_{j \in \mathcal{I}^{(k)}} R_{i, j}^{(k-1, k)} \psi_{j}^{(k)}$
13: $\quad g^{(k-1)}=R^{(k-1, k)} g^{(k)}$
14: end for
15: $U^{(1)}=A^{(1),-1} g^{(1)}$
16: $u^{(1)}=\sum_{i \in \mathcal{I}^{(1)}} U_{i}^{(1)} \psi_{i}^{(1)}$
17: $u=u^{(1)}+\left(u^{(2)}-u^{(1)}\right)+\cdots+\left(u^{(q)}-u^{(q-1)}\right)$

Fast Gamblet Transform obtained by truncation/localization

Complexity Theorem $\quad N=\operatorname{Card}\left(\mathcal{I}^{(q)}\right)$

$N \log ^{3 d}(N)$: Computation of all gamblets
$N \log ^{d+1}(N)$: Gamblet transform/solve of $u \in \mathcal{B}$ to accuracy H^{q} in $\|\cdot\|$ norm
Based on exponential decay of gamblets and locality of the operator d : Hausdorff dimension of d^{A}. d^{A} : Graph distance of A on $\mathcal{I}^{(q)}$
$A_{i, j}:=\left\langle\varphi_{i}, \varphi_{j}\right\rangle$, stiffness matrix of the operator

$$
\operatorname{Card}\left\{j \mid d_{i, j}^{A} \leq r\right\} \leq C r^{d}
$$

Localization of Gamblets

$$
\mathcal{B}:=H_{0}^{s}(\Omega) \quad\|u\|^{2}:=[\mathcal{L} u, u]
$$

$$
\psi_{i}=\mathbb{E}\left[\xi \mid\left[\phi_{j}, \xi\right]=\delta_{i, j} \text { for } j \in \mathcal{I}\right]
$$

$$
\phi_{i}=1_{\tau_{i}}
$$

Sparsity of the precision matrix

$$
\Theta_{i, j}=\operatorname{Cov}\left(\left[\phi_{i}, \xi\right],\left[\phi_{j}, \xi\right]\right)
$$

$$
\Theta_{i, j}^{-1}=\left\langle\psi_{i}, \psi_{j}\right\rangle
$$

$$
\Theta_{i, j}^{-1}=0
$$

$$
\tau_{i}
$$

$$
v
$$

$$
\tau_{j}
$$

$$
\left.\operatorname{Cov}\left(\left[\phi_{i}, \xi\right],\left[\phi_{j}, \xi\right] \mid\left[\phi_{l}, \xi\right], l \neq i, j\right]\right)=0
$$

Localization problem in Numerical Homogenization

[Chu-Graham-Hou-2010] (limited inclusions)
[Efendiev-Galvis-Wu-2010] (limited inclusions or mask)
[Babuska-Lipton 2010] (local boundary eigenvectors)
[Owhadi-Zhang 2011] (localized transfer property)
[Malqvist-Peterseim 2012] Local Orthogonal Decomposition
[Owhadi-Zhang-Berlyand 2013] (Rough Polyharmonic Splines)
[A. Gloria, S. Neukamm, and F. Otto, 2015] (quantification of ergodicity)
[Hou and Liu,DCDS-A, 2016] [Chung-Efendiev-Hou, JCP 2016]
[Owhadi, Multiresolution operator decomposition, SIREV 2017]
[Owhadi, Zhang, gamblets for hyperbolic and parabolic PDEs, 2016]
[Hou, Qin, Zhang, 2016] [Hou, Zhang, 2017]
[Hou and Zhang, 2017]: Higher order PDEs (localization under strong ellipticity, h sufficiently small, and higher order polynomials as measurement functions)
[Kornhuber, Peterseim, Yserentant, 2016]: Subspace decomposition

Subspace decomposition/correction and Schwarz iterative methods

[J. Xu, 1992]: Iterative methods by space decomposition and subspace correction
[Griebel-Oswald, 1995]: Schwarz algorithms

Example

$$
\mathcal{B}:=H_{0}^{s}(\Omega) \quad\|u\|^{2}:=[\mathcal{L} u, u]
$$

\mathcal{L} : arbitrary continuous positive symmetric linear bijection

$$
\left(H_{0}^{s}(\Omega),\|\cdot\|_{H_{0}^{s}(\Omega)}\right) \xrightarrow{\mathcal{L}}\left(H^{-s}(\Omega),\|\cdot\|_{H^{-s}(\Omega)}\right)
$$

$$
\begin{aligned}
\mathcal{L} \text { is local } & \langle u, v\rangle=0 \text { if } u \text { and } v \\
& \text { have disjoint supports }
\end{aligned}
$$

Examples

$$
\tau_{i}^{\tau_{i}}
$$

Theorem

$$
\left\|\psi_{i, \alpha}-\psi_{i, \alpha}^{n}\right\|_{H_{0}^{s}(\Omega)} \leq C e^{-n / C}
$$

$$
H_{0}^{s}(\Omega)=\sum_{i \in \beth} H_{0}^{s}\left(\Omega_{i}\right)
$$

$$
\Omega=\cup_{i} \Omega_{i}
$$

Condition for localization
For $\varphi \in H^{-s}(\Omega)$

$$
\begin{gathered}
C_{\min } \leq \frac{\sum_{i} \inf _{\phi \in \Phi}\|\varphi-\phi\|_{H^{-s}\left(\Omega_{i}\right)}^{2}}{\inf _{\phi \in \Phi}\|\varphi-\phi\|_{H^{-s}(\Omega)}^{2}} \leq C_{\max } \\
\Phi=\left\{\phi_{i, \alpha} \mid(i, \alpha) \in \beth \times \aleph\right\}
\end{gathered}
$$

Theorem

Assume that there exists a constant C_{0} such that $|\aleph| \leq C_{0}$,

- $\left\|D^{t} f\right\|_{L^{2}(\Omega)} \leq C_{0} h^{s-t}\|f\|_{H_{0}^{s}(\Omega)}$ for $t \in\{0,1, \ldots, s\}$, for $f \in H_{0}^{s}(\Omega)$ such that $\left[\phi_{i, \alpha}, f\right]=0$ for $(i, \alpha) \in \beth \times \aleph$,
- $\sum_{i \in \mathcal{Z}, \alpha \in \mathbb{\aleph}}\left[\phi_{i, \alpha}, f\right]^{2} \leq C_{0}\left(\|f\|_{L^{2}(\Omega)}^{2}+h^{2 s}\|f\|_{H_{0}^{s}(\Omega)}^{2}\right)$, for $f \in H_{0}^{s}(\Omega)$, and
- $|x|^{2} \leq C_{0} h^{-2 s}\left\|\sum_{\alpha \in \mathbb{M}} x_{\alpha} \phi_{i, \alpha}\right\|_{H^{-s}\left(\tau_{i}\right)}^{2}$, for $i \in \beth$ and $x \in \mathbb{R}^{\aleph}$.

Then for $\varphi \in H^{-s}(\Omega)$

$$
C_{\min } \leq \frac{\sum_{i} \inf _{\phi \in \Phi}\|\varphi-\phi\|_{H^{-s}\left(\Omega_{i}\right)}^{2}}{\inf _{\phi \in \Phi}\|\varphi-\phi\|_{H^{-s}(\Omega)}^{2}} \leq C_{\max }
$$

Where $C_{\text {max }}, C_{\text {min }}$ depend only on C_{0}, d, δ and s

Banach space setting

$$
\mathcal{B}=\sum_{i \in \mathcal{Z}} \mathcal{B}_{i}
$$

$\|\cdot\|_{i}$ and $\|\cdot\|_{i, *}$ norms induced by $\|\cdot\|$ on \mathcal{B}_{i} and \mathcal{B}_{i}^{*}
Condition for localization
For $\varphi \in \mathcal{B}^{*}$

$$
\begin{aligned}
& C_{\min } \leq \frac{\sum_{i} \inf _{\phi \in \Phi}\|\varphi-\phi\|_{i, *}^{2}}{\inf _{\phi \in \Phi}\|\varphi-\phi\|_{*}^{2}} \leq C_{\max } \\
& \Phi=\left\{\phi_{i, \alpha} \mid(i, \alpha) \in \beth \times \aleph\right\}
\end{aligned}
$$

Operator connectivity distance

$C: \beth \times \beth$ connectivity matrix
$C_{i, j}=1$ if $\exists\left(\chi_{i}, \chi_{j}\right) \in \mathcal{B}_{i} \times \mathcal{B}_{j}$ s.t. $\left\langle\chi_{i}, \chi_{j}\right\rangle \neq 0$
$C_{i, j}=0$ otherwise
d: Graph distance on \beth induced by C
$\psi_{i, \alpha}^{n}$: Localization of $\psi_{i, \alpha}$ to \mathcal{B}_{i}^{n}

$$
\mathcal{B}_{i}^{n}=\cup_{j: \mathbf{d}(i, j) \leq{ }_{n} B_{i}}
$$

Theorem Under localization conditions

$$
\left\|\psi_{i, \alpha}-\psi_{i, \alpha}^{n}\right\| \leq C e^{-n / C}
$$

Thank you

- Universal Scalable Robust Solvers from Computational Information Games and fast eigenspace adapted Multiresolution Analysis, 2017. arXiv:1703.10761. H. Owhadi and C. Scovel.
- Compression, inversion, and approximate PCA of dense kernel matrices at near-linear computational complexity, Schäfer, Sullivan, Owhadi. 2017.
- Multigrid with gamblets. L. Zhang and H. Owhadi, 2017
- Gamblets for opening the complexity-bottleneck of implicit schemes for hyperbolic and parabolic ODEs/PDEs with rough coefficients, 2016. H. Owhadi and L. Zhang. arXiv:1606.07686
- Multigrid with rough coefficients and Multiresolution operator decomposition from Hierarchical Information Games. H. Owhadi. SIAM Review, 59(1), 99149, 2017. arXiv:1503.03467
- Towards Machine Wald (book chapter). Houman Owhadi and Clint Scovel. Springer Handbook of Uncertainty Quantification, 2016, arXiv:1508.02449.
- Bayesian Numerical Homogenization. H. Owhadi. SLAM Multiscale Modeling \& Simulation, 13(3), 812828, 2015. arXiv:1406.6668

DARPA EQUiPS / AFOSR award no FA9550-16-1-0054 (Computational Information Games)

