Computational Information Games A minitutorial Part II

Houman Owhadi

ICERM June 5, 2017

[H. Owhadi and C. Scovel. Universal Scalable Robust Solvers from Computational Information Games and fast eigenspace adapted Multiresolution Analysis 2017. arXiv:1703.10761]

DARPA EQUiPS / AFOSR award no FA9550-16-1-0054 (Computational Information Games)

Question

Can we design a linear solver with some degree of universality? (that could be applied to a large class of linear operators)

Motivation

There are (nearly) as many linear solvers as linear systems. Number of google scholar references to "linear solvers": 447,000

Not clear that this can be done

"Of course no one method of approximation of a 'linear operator' can be universal." [Sard, 1967. Optimal approximation. Journal of Functional Analysis]

Arthur Sard (1909-1980)

$$\left\{ egin{array}{ll} -\operatorname{div}(a
abla u)=g, & x\in\Omega, \ u=0, & x\in\partial\Omega, \end{array}
ight.$$

Multigrid Methods

Multigrid: [Fedorenko, 1961, Brandt, 1973, Hackbusch, 1978]

Multiresolution/Wavelet based methods

[Brewster and Beylkin, 1995, Beylkin and Coult, 1998, Averbuch et al., 1998
[Beylkin, Coifman, Rokhlin, 1992] [Engquist, Osher, Zhong, 1992]
[Alpert, Beylkin, Coifman, Rokhlin, 1993]
[Cohen, Daubechies, Feauveau. 1992]
[Bacry, Mallat, Papanicolaou. 1993]

Linear complexity with smooth coefficients

Problem Severely affected by lack of smoothness

Robust/Algebraic multigrid

[Mandel et al., 1999, Wan-Chan-Smith, 1999, Xu and Zikatanov, 2004, Xu and Zhu, 2008], [Ruge-Stüben, 1987] [Panayot - 2010]

Stabilized Hierarchical bases, Multilevel preconditioners

[Vassilevski - Wang, 1997, 1998]
[Panayot - Vassilevski, 1997]
[Chow - Vassilevski, 2003]
[Aksoylu- Holst, 2010]

Some degree of robustness

Low Rank Matrix Decomposition methods

Fast Multipole Method: [Greengard and Rokhlin, 1987]

Hierarchical Matrix Method: [Hackbusch et al., 2002]

[Bebendorf, 2008]:

$$N \ln^{2d+8} N$$
 complexity

To achieve grid-size accuracy in L^2 -norm

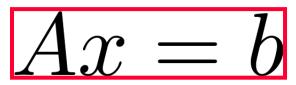
Hierarchical numerical homogenization method

[H. Owhadi, Multigrid with rough coefficients and Multiresolution operator decomposition from Hierarchical Information Games. SIAM Review, 2017]

$$\mathcal{O}(N\ln^{3d}N)$$

$$\mathcal{O}(N \ln^{d+1} N)$$

To achieve grid-size accuracy in H^1 -norm



Sparse matrix Laplacians

Sparsified Cholesky and Multigrid Solvers for Connection Laplacians: [Kyng, Lee, Peng, Sachdeva, Spielman , 2016]

Approximate Gaussian Elimination: [Kyng and Sachdeva, 2016]

$N \operatorname{polylog}(N) \operatorname{complexity}$

Structured sparse matrices (SDD matrices)

Graph sparsification: [Spielman and Teng , 2004]
Diagonally dominant linear systems: [Spielman and Teng , 2014]
[Koutis, Miller, Gary and Peng , 2014]
[Cohen, Kyng, Miller, Pachocki, Peng, Rao, and Xu, 2014]
[Kelner, Orecchia, Sidford, Zhu, 2013]

The problem

 $\begin{array}{c} \mathcal{T}: \text{ Continuous linear bijection} \\ \mathcal{B} \underbrace{\qquad \mathcal{T} \qquad }_{} \mathcal{B}^* \end{array}$

We want to approximate \mathcal{T}^{-1} and all its eigen-subpaces in near-linear complexity

For
$$u, v \in \mathcal{B}$$
,
• $[\mathcal{T}u, v] = [\mathcal{T}v, u],$
• $[\mathcal{T}u, u] \ge 0$

$$\|u\|^2 := [\mathcal{T}u, u]$$

 $(\mathcal{B}, \|\cdot\|)$: separable Banach space

$$egin{cases} -\operatorname{div}(a
abla u)=g, & x\in\Omega,\ u=0, & x\in\partial\Omega, \end{cases}$$

$$\mathcal{T} = -\operatorname{div}(a\nabla \cdot)$$

$$(H_0^1(\Omega), \|\cdot\|_{H_0^1(\Omega)}) \xrightarrow{-\operatorname{div}(a\nabla\cdot)} (H^{-1}(\Omega), \|\cdot\|_{H^{-1}(\Omega)})$$
$$\mathcal{B} := H_0^1(\Omega)$$

$$\|u\|^2 := \int_{\Omega} (\nabla u)^T a \nabla u$$

Example $\mathcal{L}u = q$

 \mathcal{L} : arbitrary continuous linear bijection

 $(H_0^s(\Omega), \|\cdot\|_{H_0^s(\Omega)}) \xrightarrow{\mathcal{L}} (H^{-s}(\Omega), \|\cdot\|_{H^{-s}(\Omega)})$

 \mathcal{L} : Symmetric and positive

•
$$[\mathcal{L}u, v] = [\mathcal{L}v, u],$$

•
$$[\mathcal{L}u, u] \ge 0$$

$$\mathcal{B} := H_0^s(\Omega)$$
$$\mathcal{T} = \mathcal{L}$$
$$\|u\|^2 := [\mathcal{L}u, u]$$

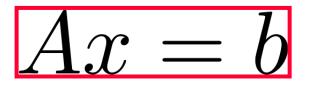
Example $\mathcal{L}u = g \iff \mathcal{L}^*\mathcal{L}u = \mathcal{L}^*g$

 \mathcal{L} : arbitrary continuous linear bijection

$$(H_0^s(\Omega), \|\cdot\|_{H_0^s(\Omega)}) \xrightarrow{\mathcal{L}} (L^2(\Omega), \|\cdot\|_{L^2(\Omega)})$$

$$\mathcal{B} := H_0^s(\Omega)$$
$$\mathcal{T} = \mathcal{L}^* \mathcal{L}$$

$$\|u\| := \|\mathcal{L}u\|_{L^2(\Omega)}$$



A: $N \times N$ symmetric postive definite matrix

$\mathcal{B} := \mathbb{R}^N$ $\mathcal{T} = A$

 $\|x\|^2 := x^T A x$

 $Ax = b \Leftrightarrow A^T Ax = A^T b$

A: $N \times N$ invertible matrix

 $\mathcal{B} := \mathbb{R}^N$ $\mathcal{T} = A^T A$

 $||x||^2 := |Ax|^2$

$$\mathcal{B} \longrightarrow \mathcal{B}^*$$

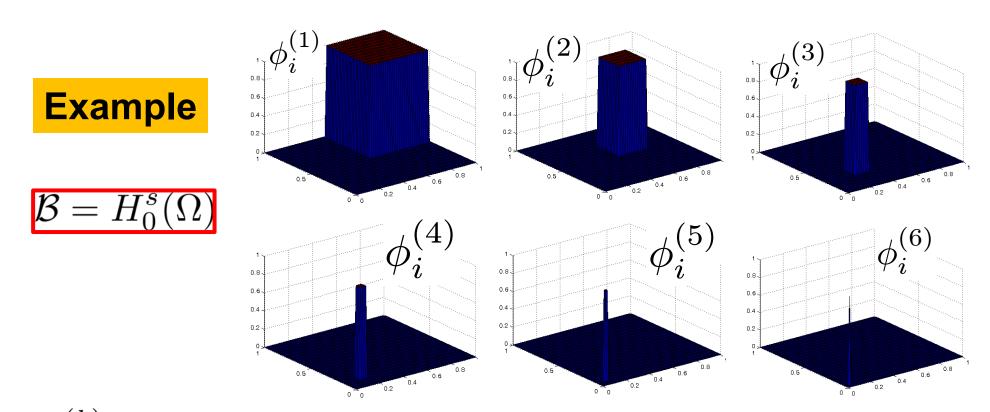
$$\|u\|^2 := [\mathcal{T}u, u]$$

Hierarchy of measurement functions

$$\phi_i^{(k)} \in \mathcal{B}^* \text{ with } k \in \{1, \dots, q\}$$

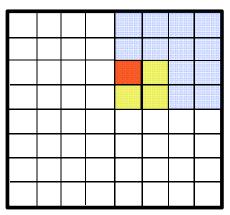
$$\phi_i^{(k)} = \sum_j \pi_{i,j}^{(k,k+1)} \phi_j^{(k+1)}$$

[Multigrid with rough coefficients and Multiresolution operator decomposition from Hierarchical Information Games. H. Owhadi. SIAM Review, 59(1), 99149, 2017. arXiv:1503.03467]



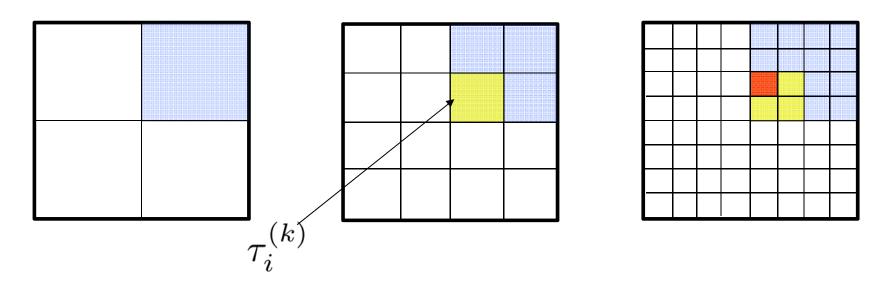
 $\phi_i^{(k)}$: Weighted indicator functions of a hierarchical nested partition of Ω of resolution 2^{-k}

e de um sins de um um sins de um um um sins de um um sins de um um sins de um sins de um sins de um
. () () () () () () () () () () () () ()



 $(\phi_{i,\alpha}^{(k)})_{\alpha\in\square}$: orthonormal basis functions of $\mathcal{P}_{s-1}(\tau_i^{(k)})$

 $\mathcal{P}_{s-1}(\tau_i^{(k)})$: polynomials of degree at most s-1

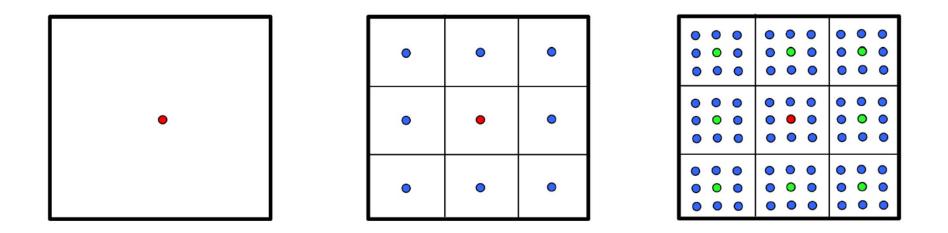


[H. Owhadi and C. Scovel. Universal Scalable Robust Solvers from Computational Information Games and fast eigenspace adapted Multiresolution Analysis 2017. arXiv:1703.10761]

T. Y. Hou and P. Zhang. Sparse operator compression of higher order elliptic operators with rough coefficients. *To appear*, 2017.

Example $\mathcal{B} = H_0^s(\Omega)$ s > d/2

$\phi_i^{(k)}$: Subsampled delta Dirac functions



[Schäfer, Sullivan, Owhadi. 2017]: Compression, inversion, and approximate PCA of dense kernel matrices at near-linear computational complexity.

[H. Owhadi and C. Scovel. Universal Scalable Robust Solvers from Computational Information Games and fast eigenspace adapted Multiresolution Analysis 2017. arXiv:1703.10761] Player I

Chooses $u \in \mathcal{B}$

Sees $[\phi_i^{(k)}, u], i \in \mathcal{I}_k$ Must predict u and $[\phi_j^{(k+1)}, u], j \in \mathcal{I}_{k+1}$

 $\mathcal{B} = H_0^1(\Omega)$

Chooses $u \in H_0^1(\Omega)$

Sees $\{\int_{\Omega} u \phi_i^{(k)}, i \in \mathcal{I}_k\}$ Must predict u and $\{\int_{\Omega} u \phi_j^{(k+1)}, j \in \mathcal{I}_{k+1}\}$

Player II's bets

$$u^{(k)} := \mathbb{E}\left[\xi \left| \left[\phi_i^{(k)}, \xi\right] = \left[\phi_i^{(k)}, u\right], \ i \in \mathcal{I}_k\right]\right]$$

$$\mathcal{F}^{(k)} = \sigma([\phi_i^{(k)}, \xi], \ i \in \mathcal{I}_k)$$
$$\xi^{(k)} = \mathbb{E}[\xi | \mathcal{F}^{(k)}]$$

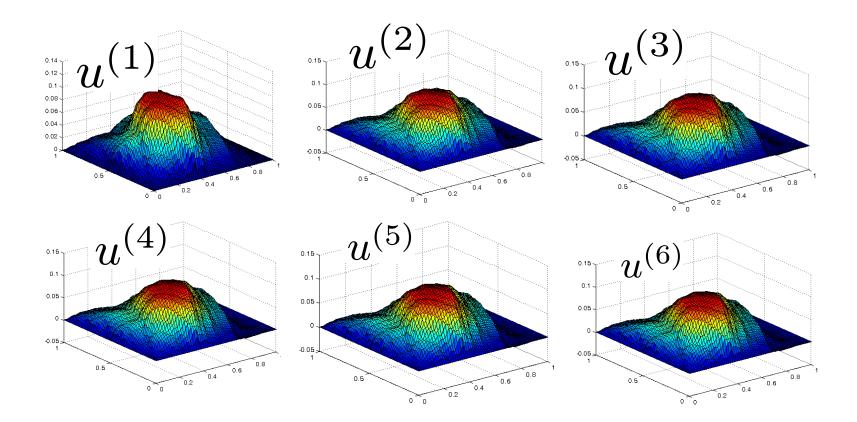
- $\xi^{(k)}$: Martingale
- $\xi^{(k)}$: Converging a.s.

 $\xi^{(k+1)} - \xi^{(k)}$: Uncorrelated (therefore independent)

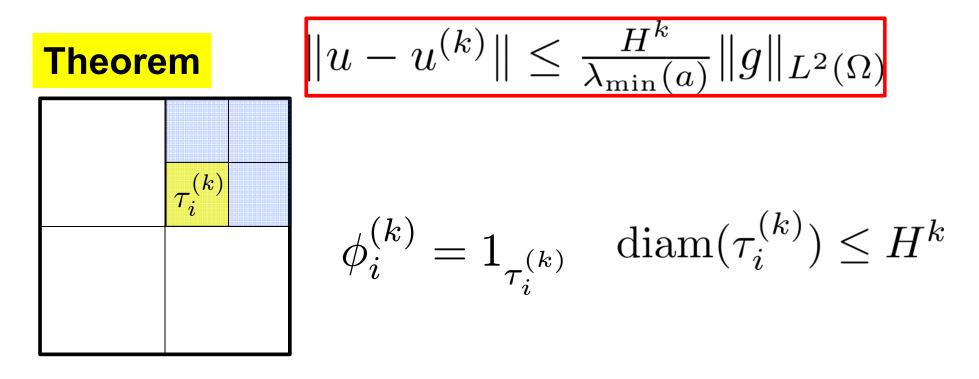
 $\mathcal{B} = H_0^1(\Omega)$

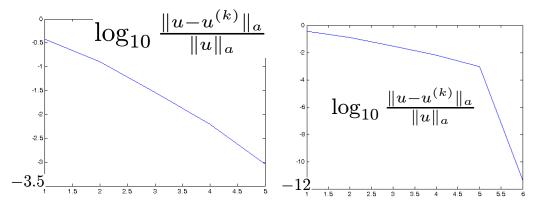
$$\|u\|^2 = \int_{\Omega} (\nabla u)^T a \nabla u$$

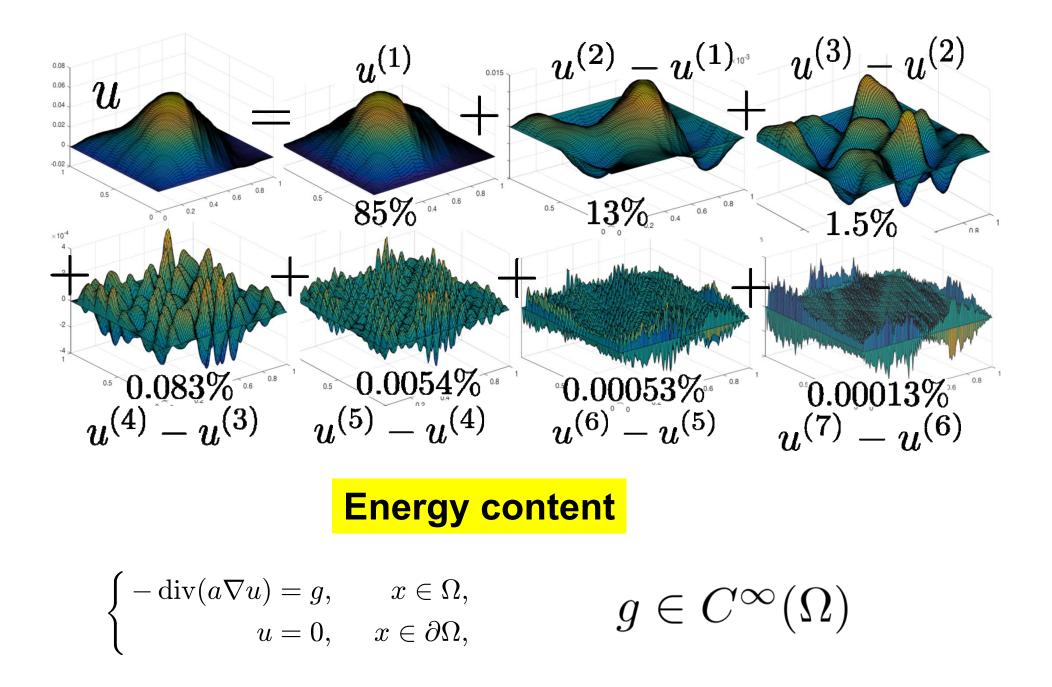
$$\left\{ egin{array}{ll} -\operatorname{div}(a
abla u)=g, & x\in\Omega, \ u=0, & x\in\partial\Omega, \end{array}
ight.$$



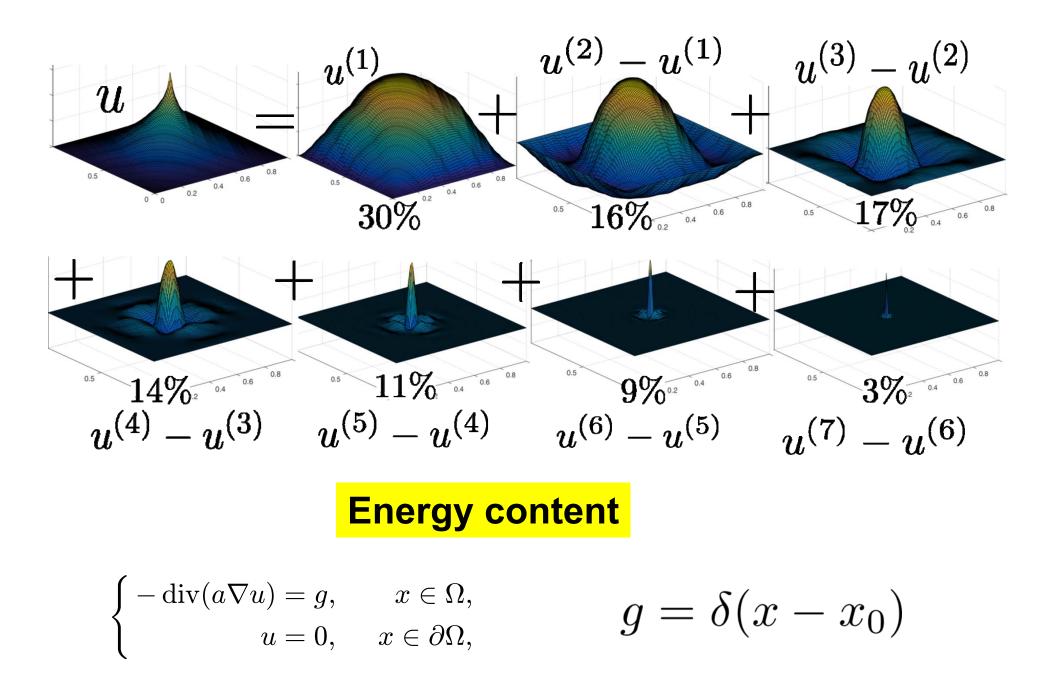
Accuracy of the recovery







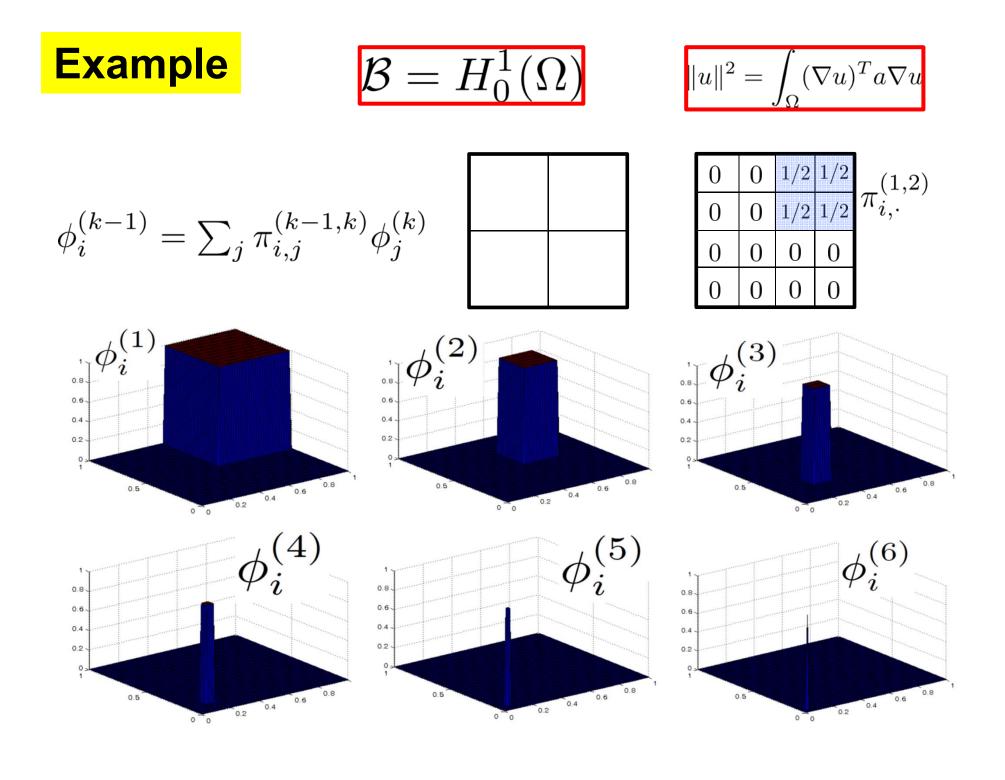
If r.h.s. is regular we don't need to compute all subbands

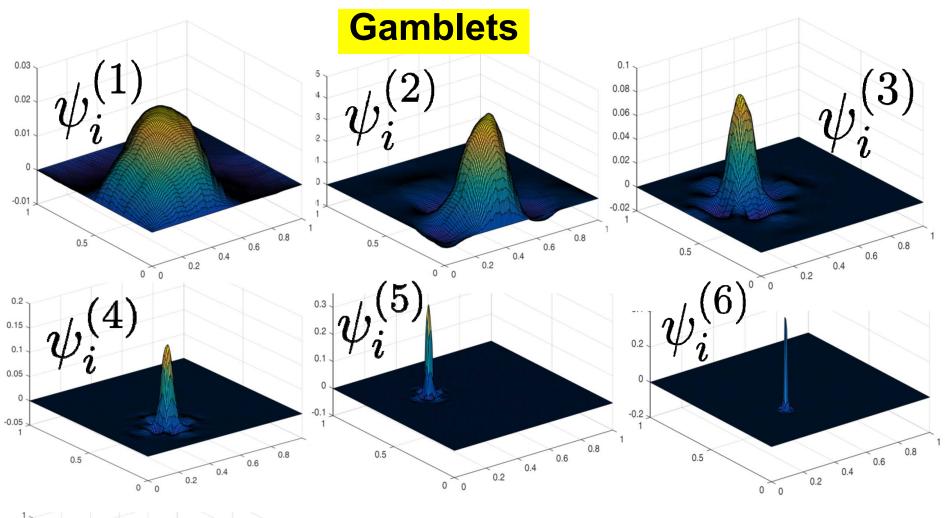


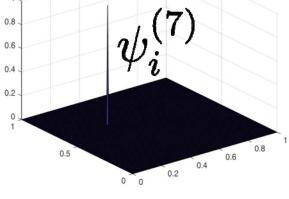
$$u^{(k)} = \sum_{i} [\phi_{i}^{(k)}, u] \psi_{i}^{(k)}$$

Gamblets

$$\psi_i^{(k)} = \mathbb{E}\left[\xi \left| \left[\phi_l^{(k)}, \xi\right] = \delta_{i,l}, \ l \in \mathcal{I}_k \right] \right]$$







$$\psi_i^{(k)} = \mathbb{E}\left[\xi \left| \left[\phi_l^{(k)}, \xi\right] = \delta_{i,l}, \ l \in \mathcal{I}_k \right] \right]$$

Gamblets are nested

$$\psi_i^{(k)} = \sum_j R_{i,j}^{(k,k+1)} \psi_j^{(k+1)}$$

$$\psi_i^{(k)} = \mathbb{E}\left[\mathbb{E}[\xi|\mathcal{F}_{k+1}] \middle| [\phi_l^{(k)}, \xi] = \delta_{i,l}, \ l \in \mathcal{I}_k\right]$$
$$\mathbb{E}[\xi|\mathcal{F}_{k+1}] = \sum_j [\phi_j^{(k+1)}, \xi] \ \psi_j^{(k+1)}$$

$$R_{i,j}^{(k,k+1)} = \mathbb{E}\left[\phi_{j}^{(k+1)}, \xi \right] \left| \phi_{l}^{(k)}, \xi \right] = \delta_{i,l}, \ l \in \mathcal{I}_{k}$$

Interpolation/Prolongation operator

Player I

 $\begin{array}{l} \text{Chooses} \\ u \in \mathcal{B} \end{array}$

Sees $[\phi_i^{(k)}, u], i \in \mathcal{I}_k$ Must predict $[\phi_{i}^{(k+1)}, u], j \in \mathcal{I}_{k+1}$

Optimal bet of Player II O

on the value of $[\phi_j^{(k+1)}, u]$

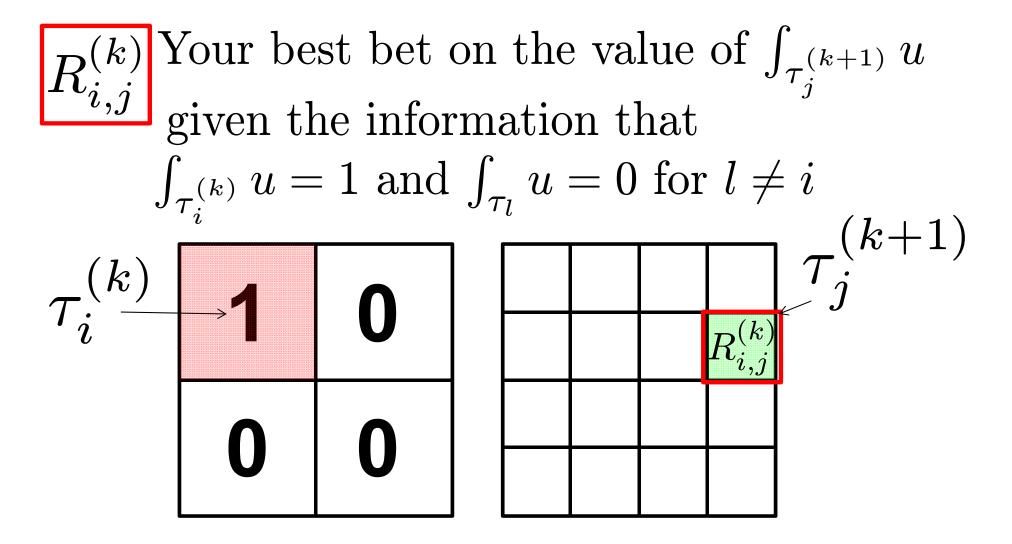
$$\sum_{i} [\phi_{i}^{(k)}, u] R_{i,j}^{(k,k+1)}$$

Example
$$\mathcal{B} = H_0^1(\Omega) \quad \begin{cases} -\operatorname{div}(a\nabla u) = g, \\ u = 0 \end{cases}$$

$$-\operatorname{div}(a
abla u) = g, \qquad x \in \Omega,$$

 $u = 0, \qquad x \in \partial\Omega,$

$$R_{i,j}^{(k)} = \mathbb{E}\left[\left|\int_{\Omega} \xi(y)\phi_j^{(k+1)}(y)\,dy\right|\int_{\Omega} \xi(y)\phi_l^{(k)}(y)\,dy = \delta_{i,l},\,l\in\mathcal{I}_k\right]$$



$$\mathcal{B} \longrightarrow \mathcal{B}^*$$

$$\|u\|^2 := [\mathcal{T}u, u]$$

Hierarchy of measurement functions

$$\phi_i^{(k)} \in \mathcal{B}^* \text{ with } k \in \{1, \dots, q\}$$

 $\phi_i^{(k)} = \sum_j \pi_{i,j}^{(k,k+1)} \phi_j^{(k+1)}$

Hierarchy of gamblets

$$\psi_i^{(k)} = \sum_{j \in \mathcal{I}^{(k)}} \Theta_{i,j}^{(k),-1} \mathcal{T}^{-1} \phi_j^{(k)}$$

$$\Theta_{i,j}^{(k)} := [\phi_i^{(k)}, \mathcal{T}^{-1}\phi_j^{(k)}]$$

Biorthogonal system

$$[\phi_j^{(k)}, \psi_i^{(k)}] = \delta_{i,j}$$

$$\mathfrak{V}^{(k)} := \operatorname{span}\{\psi_i^{(k)} \mid i \in \mathcal{I}^{(k)}\}$$

Theorem

The $\langle \cdot, \cdot \rangle$ orthogonal projection of $u \in \mathcal{B}$ onto $\mathfrak{V}^{(k)}$ is

$$u^{(k)} = \sum_{i \in \mathcal{I}^{(k)}} [\phi_i^{(k)}, u] \psi_i^{(k)}$$

Measurement functions are nested

$$\phi_i^{(k)} = \sum_j \pi_{i,j}^{(k,k+1)} \phi_j^{(k+1)}$$

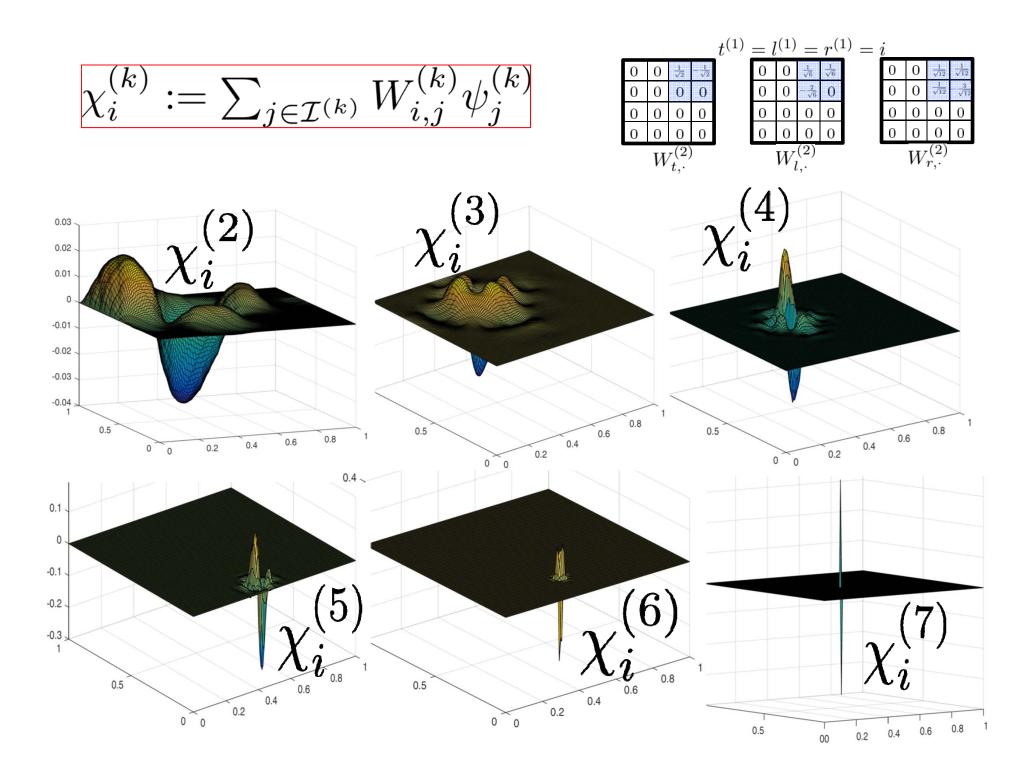
Gamblets are nested

$$\psi_i^{(k)} = \sum_{j \in \mathcal{I}^{(k+1)}} R_{i,j}^{(k,k+1)} \psi_j^{(k+1)}$$

Orthogonalized gamblets

$$\chi_{i}^{(k)} := \sum_{j \in \mathcal{I}^{(k)}} W_{i,j}^{(k)} \psi_{j}^{(k)}$$

For $k \ge 2$ $W^{(k)}$: $\mathcal{J}^{(k)} \times \mathcal{I}^{(k)}$ matrix such that
 $\operatorname{Img}(W^{(k),T}) = \operatorname{Ker}(\pi^{(k-1,k)})$
and $W^{(k)}(W^{(k)})^{T} = J^{(k)}$

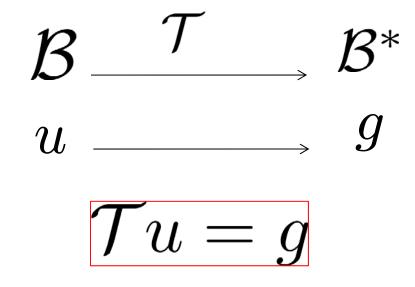


Operator adapted MRA

$$\begin{split} \mathfrak{V}^{(k)} &:= \operatorname{span} \{ \psi_i^{(k)} \mid i \in \mathcal{I}^{(k)} \} \\ \mathfrak{W}^{(k)} &:= \operatorname{span} \{ \chi_i^{(k)} \mid i \in \mathcal{I}^{(k)} \} \\ \end{split}$$
Theorem
$$\mathfrak{V}^{(k)} &= \mathfrak{V}^{(k-1)} \oplus \mathfrak{W}^{(k)}$$

$$\mathcal{B} &= \mathfrak{V}^{(1)} \oplus \mathfrak{W}^{(2)} \oplus \mathfrak{W}^{(3)} \oplus \cdots$$

 $u^{(k)} - u^{(k-1)}$: The $\langle \cdot, \cdot \rangle$ orthogonal projection of $u \in \mathcal{B}$ onto $\mathfrak{W}^{(k)}$

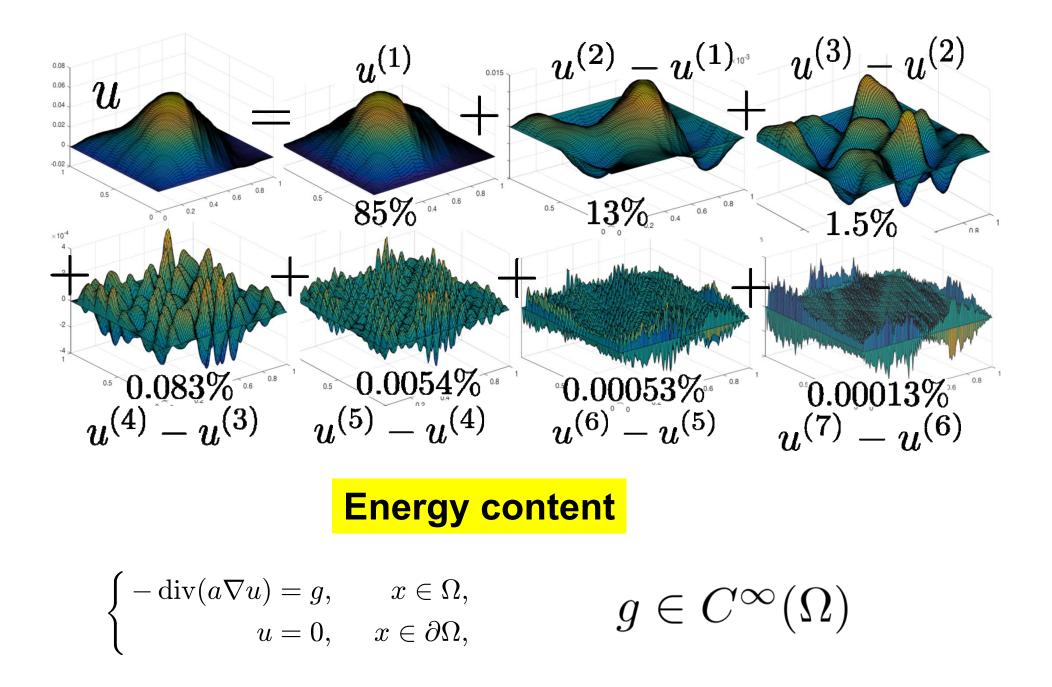


Theorem $u = u^{(1)} + \cdots + (u^{(k)} - u^{(k-1)}) + \cdots$

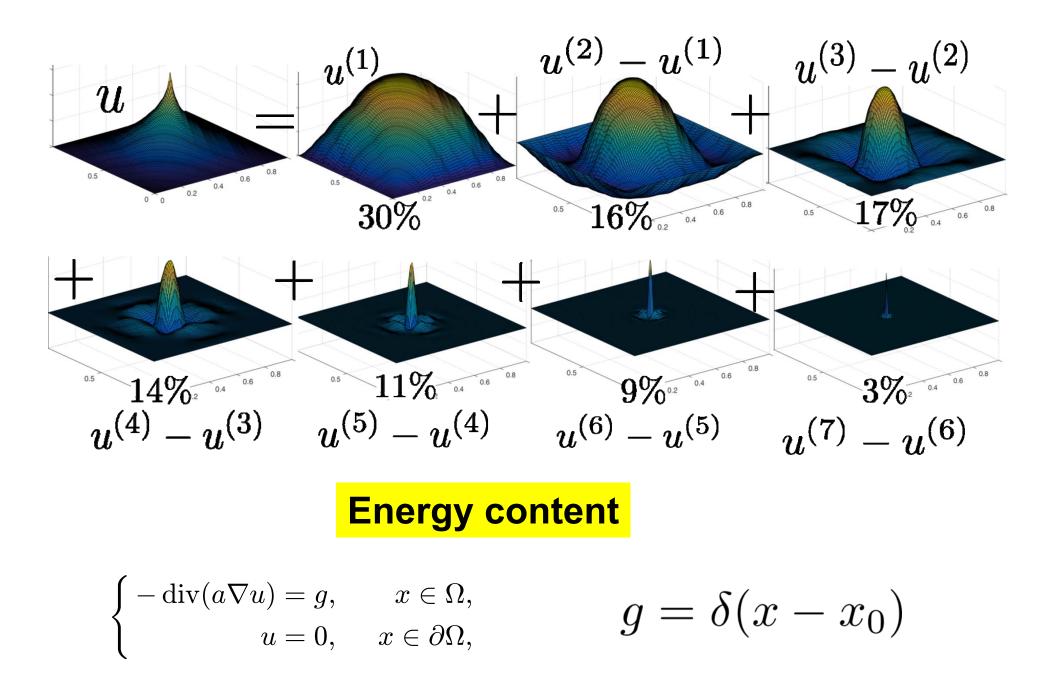
$$u^{(k)} - u^{(k-1)} = \sum_{i \in \mathcal{I}^{(k)}} w_i^{(k)} \chi_i^{(k)}$$

$$B^{(k)}w^{(k)} = g^{(k)}$$

 $g_i^{(k)} = [g, \chi_i^{(k)}] \qquad B_{i,j}^{(k)} = \left\langle \chi_i^{(k)}, \chi_j^{(k)} \right\rangle$



If r.h.s. is regular we don't need to compute all subbands



Operator adapted wavelets

First Generation Wavelets: Signal and imaging processing

- [Mallat, 1989] [Daubechies, 1990]
- [Coifman, Meyer, and Wickerhauser, 1992]

First Generation Operator Adapted Wavelets (shift and scale invariant)

[Cohen, Daubechies, Feauveau. Biorthogonal bases of compactly supported wavelets. 1992]
[Beylkin, Coifman, Rokhlin, 1992] [Engquist, Osher, Zhong, 1992]
[Alpert, Beylkin, Coifman, Rokhlin, 1993] [Jawerth, Sweldens, 1993]
[Dahlke, Weinreich, 1993] [Bacry, Mallat, Papanicolaou. 1993]
[Bertoluzza, Maday, Ravel, 1994] [Vasilyev, Paolucci, 1996]

[Dahmen, Kunoth, 2005] [Stevenson, 2009]

Lazy wavelets (Multiresolution decomposition of solution space)

[Yserentant. Multilevel splitting, 1986]

[Bank, Dupont, Yserentant. Hierarchical basis multigrid method. 1988]

Operator adapted wavelets

Second Generation Operator Adapted Wavelets

[Sweldens. The lifting scheme, 1998] [Dorobantu - Engquist. 1998] [Vassilevski, Wang. Stabilizing the hierarchical basis, 1997] [Carnicer, Dahmen, Peña, 1996] [Lounsbery, DeRose, Warren, 1997] [Vassilevski, Wang. Stabilizing hierarchical basis, 1997-1998] [Barinka, Barsch, Charton, Cohen, Dahlke, Dahmen, Urban, 2001] [Cohen, Dahmen, DeVore, 2001] [Chiavassa, Liandrat, 2001] [Dahmen, Kunoth, 2005] [Schwab, Stevenson, 2008] [Sudarshan, 2005] [Engquist, Runborg, 2009] [Yin, Liandrat, 2016] We want

- 1. Scale-orthogonal wavelets with respect to operator scalar product (leads to block-diagonalization)
- 2. Operator to be well conditioned within each subband
- 3. Wavelets need to be localized (compact support or exp. decay)

Eigenspace adapted MRA

$$A_{i,j}^{(k)} = \left\langle \psi_i^{(k)}, \psi_j^{(k)} \right\rangle \qquad B_{i,j}^{(k)} = \left\langle \chi_i^{(k)}, \chi_j^{(k)} \right\rangle$$

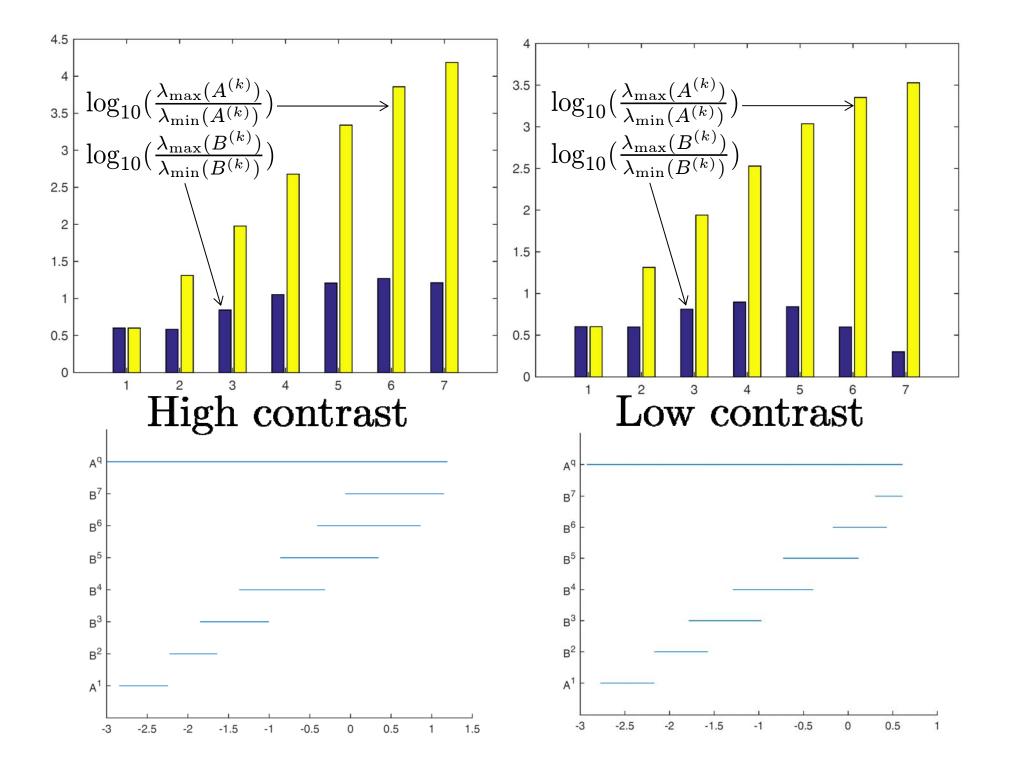
Theorem Under regularity of measurement functions

$$\frac{1}{C}H^{-2(k-1)}J^{(k)} \le B^{(k)} \le CH^{-2k}J^{(k)}$$

Cond $(B^{(k)}) \le CH^{-2}$

$$\frac{1}{C}I^{(1)} \le A^{(1)} \le CH^{-2}I^{(1)}$$

Cond $(A^{(1)}) \le CH^{-2}$



Wannier functions

[Wannier. Dynamics of band electrons in electric and magnetic fields. 1962]

[Kohn. Analytic properties of Bloch waves and Wannier functions, 1959]

[Marzari, Vanderbilt. Maximally localized generalized Wannier functions for composite energy bands. 1997]

[E, Tiejun, Jianfeng. Localized bases of eigensubspaces and operator compression, 2010]

[Vidvuds, Lai, Caflisch, Osher, Compressed modes for variational problems in mathematics and physics, 2013]

[Owhadi, Multiresolution operator decomposition, SIREV 2017]

[Owhadi, Zhang, gamblets for hyperbolic and parabolic PDEs, 2016]

[Hou, Qin, Zhang, A sparse decomposition

of low rank symmetric positive semi-definite matrices, 2016]

[Hou, Zhang, Sparse operator compression of elliptic operators. 2017]

$$(\mathcal{B}, \|\cdot\|) \xrightarrow{\mathcal{T}} (\mathcal{B}^*, \|\cdot\|_*)$$

Regularity Conditions

For some $H \in (0, 1)$ and $C_{\Phi} > 0$

1.
$$|x| \leq C_{\Phi} H^{-k} \|\phi\|_{*}$$

for $\phi \in \{\sum_{i \in \mathcal{I}^{(k)}} x_i \phi_i^{(k)}\}$

2.
$$\|\phi\|_* \le C_{\Phi} H^k |x|$$

for $\phi \in \{\sum_{i \in \mathcal{I}^{(k+1)}} x_i \phi_i^{(k+1)} \mid x \in \operatorname{Ker}(\pi^{(k,k+1)})\}$

Conditions are covariant under norm equivalence

$$(H_0^s(\Omega), \|\cdot\|_{H_0^s(\Omega)}) \xrightarrow{\mathcal{L}} (H^{-s}(\Omega), \|\cdot\|_{H^{-s}(\Omega)})$$

Regularity Conditions

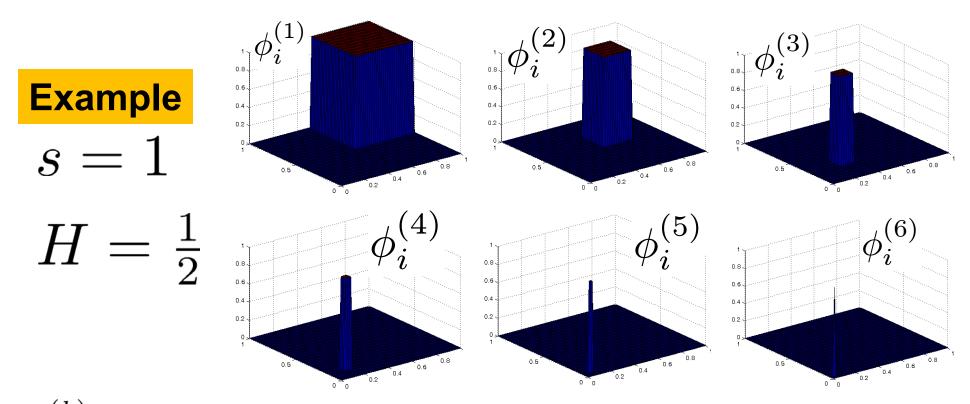
For some $H \in (0, 1)$ and $C_s > 0$

1.
$$|x| \leq C_s H^{-k} \|\phi\|_{H^{-s}(\Omega)}$$

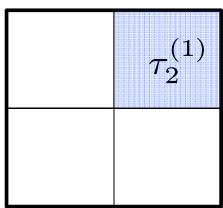
for $\phi \in \{\sum_{i \in \mathcal{I}^{(k)}} x_i \phi_i^{(k)}\}$

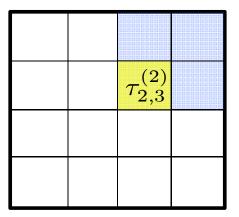
2.
$$\|\phi\|_{H^{-s}(\Omega)} \leq C_s H^k |x|$$

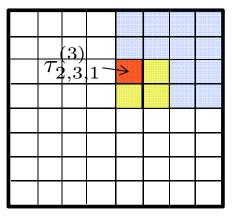
for $\phi \in \{\sum_{i \in \mathcal{I}^{(k+1)}} x_i \phi_i^{(k+1)} \mid x \in \operatorname{Ker}(\pi^{(k,k+1)})\}$

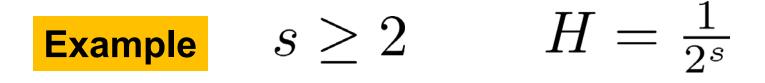


 $\phi_i^{(k)}$: Weighted indicator functions of a hierarchical nested partition of Ω of resolution 2^{-k}



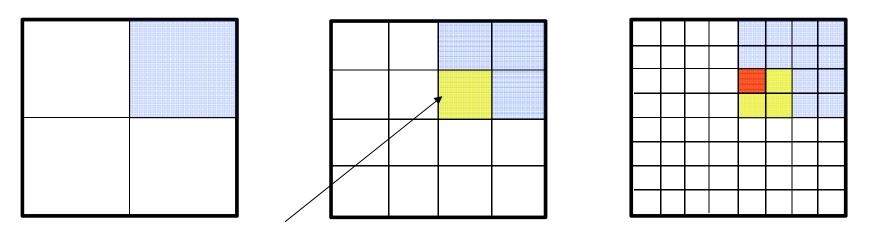






 $(\phi_{i,\alpha}^{(k)})_{\alpha\in\square}$: orthonormal basis functions of $\mathcal{P}_{s-1}(\tau_i^{(k)})$

 $\mathcal{P}_{s-1}(\tau_i^{(k)})$: polynomials of degree at most s-1



 $\tau_i^{(k)}$: Hierarchical nested partition of Ω of resolution 2^{-k}

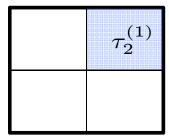
[H. Owhadi and C. Scovel. Universal Scalable Robust Solvers from Computational Information Games and fast eigenspace adapted Multiresolution Analysis 2017. arXiv:1703.10761]

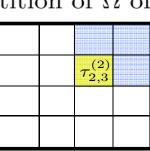
T. Y. Hou and P. Zhang. Sparse operator compression of higher order elliptic operators with rough coefficients. *To appear*, 2017.

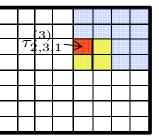
Example $s \ge 2$ $H = \frac{1}{2^s}$

[Schäfer, Sullivan, Owhadi. 2017]: Compression, inversion, and approximate PCA of dense kernel matrices at near-linear computational complexity.

 $\phi_i^{(k)}$: Weighted indicator functions of a hierarchical nested partition of Ω of resolution 2^{-k}







s > d/2

 $\phi_i^{(k)}$: Subsampled delta Dirac functions

•	

0	•	•
۰	•	•
•	0	•

0 0 0	•	•	
000	•	• •	0
0 0 0	•	•	0
000	 •	•	
000	•	•	
• • •	•	•	0
000	 •	• •	
0 0 0	•	•	
0 0 0	•	0	0 0

Example
$$\mathcal{B} := \mathbb{R}^N$$
 $\|x\|^2 := x^T A x$ A: $N \times N$ symmetric $\|x\|_*^2 := x^T A^{-1} x$ postive definite matrix $\|x\|_0^2 := x^T x$ $\phi_i^{(q)} = e_i$ $\pi^{(k,k+1)} (\pi^{(k,k+1)})^T = I^{(k)}$ Regularity Conditions $\pi^{(k,q)} = \pi^{(k,k+1)} \cdots \pi^{(q-1,q)}$ For some $H \in (0,1)$ and $C > 0$

Conditions are covariant under quadratic form equivalence

1. $\frac{1}{C\sqrt{\lambda_{\min}(A)}}H^k \leq \inf_{x \in \operatorname{Img}(\pi^{(q,k)})} \frac{\sqrt{x^T A^{-1} x}}{|x|}$

2. $\sup_{x \in \operatorname{Ker}(\pi^{(k,q)})} \frac{\sqrt{x^T A^{-1} x}}{|x|} \le \frac{C}{\sqrt{\lambda_{\min}(A)}} H^k$

Regularity Conditions on Primal Space

For some $H \in (0, 1)$ and $C_{\Phi} > 0$

1.
$$C_{\Phi}^{-1}H^k \frac{\sqrt{x^T A x}}{\lambda_{\min}(A)} \leq |x|$$

for $x \in \operatorname{Img}(\pi^{(q,k)})$ and $k \in \{1, \dots, q\}$.

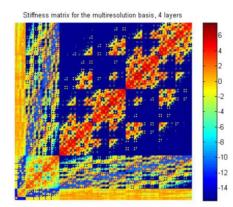
2.
$$\inf_{y \in \mathbb{R}^{\mathcal{I}^{(k)}}} |z - \pi^{(q,k)}y| \leq C_{\Phi} H^k \frac{\sqrt{z^T A z}}{\lambda_{\min}(A)}$$

for $z \in \mathbb{R}^N$ and $k \in \{1, \dots, q\}$.

1: For
$$i \in \mathcal{I}^{(q)}$$
, $\psi_i^{(q)} = \varphi_i$
2: For $i \in \mathcal{I}^{(q)}$, $g_i^{(q)} = [g, \psi_i^{(q)}]$
3: For $i, j \in \mathcal{I}^{(q)}$, $A_{i,j}^{(q)} = \langle \psi_i^{(q)}, \psi_j^{(q)} \rangle$
4: for $k = q$ to 2 do
5: $B^{(k)} = W^{(k)}A^{(k)}W^{(k),T}$
6: $w^{(k)} = B^{(k),-1}W^{(k)}g^{(k)}$
7: For $i \in \mathcal{J}^{(k)}$, $\chi_i^{(k)} = \sum_{j \in \mathcal{I}^{(k)}} W_{i,j}^{(k)}\psi_j^{(k)}$
8: $u^{(k)} - u^{(k-1)} = \sum_{i \in \mathcal{J}^{(k)}} w_i^{(k)}\chi_i^{(k)}$
9: $D^{(k,k-1)} = -B^{(k),-1}W^{(k)}A^{(k)}\overline{\pi}^{(k,k-1)}$
10: $R^{(k-1,k)} = \overline{\pi}^{(k-1,k)} + D^{(k-1,k)}W^{(k)}$
11: $A^{(k-1)} = R^{(k-1,k)}A^{(k)}R^{(k,k-1)}$
12: For $i \in \mathcal{I}^{(k-1)}$, $\psi_i^{(k-1)} = \sum_{j \in \mathcal{I}^{(k)}} R_{i,j}^{(k-1,k)}\psi_j^{(k)}$
13: $g^{(k-1)} = R^{(k-1,k)}g^{(k)}$
14: end for
15: $U^{(1)} = A^{(1),-1}g^{(1)}$
16: $u^{(1)} = \sum_{i \in \mathcal{I}^{(1)}} U_i^{(1)}\psi_i^{(1)}$
17: $u = u^{(1)} + (u^{(2)} - u^{(1)}) + \dots + (u^{(q)} - u^{(q-1)})$

Gamblet Transform/Solve

Fast Gamblet Transform obtained by truncation/localization

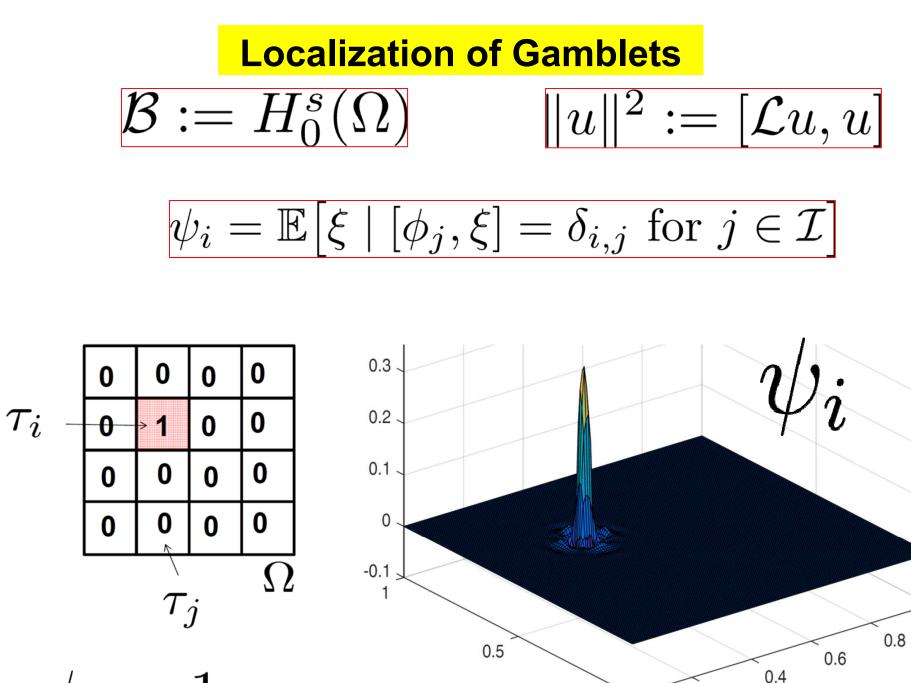


Complexity Theorem
$$N = \operatorname{Card}(\mathcal{I}^{(q)})$$

 $N \log^{3d}(N)$: Computation of all gamblets $N \log^{d+1}(N)$: Gamblet transform/solve of $u \in \mathcal{B}$ to accuracy H^q in $\|\cdot\|$ norm

Based on exponential decay of gamblets and locality of the operator

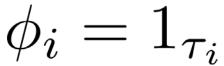
d: Hausdorff dimension of d^A . d^A : Graph distance of A on $\mathcal{I}^{(q)}$ $A_{i,j} := \langle \varphi_i, \varphi_j \rangle$, stiffness matrix of the operator $\operatorname{Card}\{j | d^A_{i,j} \leq r\} \leq C r^d$



0.2

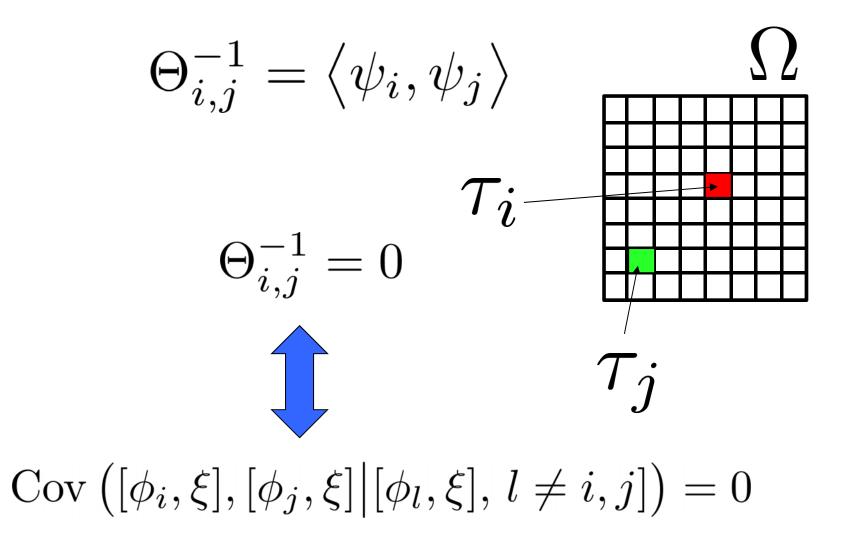
0

0



 \overline{i}

Sparsity of the precision matrix $\Theta_{i,j} = \operatorname{Cov}\left([\phi_i, \xi], [\phi_j, \xi]\right)$



Localization problem in Numerical Homogenization

[Chu-Graham-Hou-2010] (limited inclusions) [Efendiev-Galvis-Wu-2010] (limited inclusions or mask) [Babuska-Lipton 2010] (local boundary eigenvectors) [Owhadi-Zhang 2011] (localized transfer property) [Malqvist-Peterseim 2012] Local Orthogonal Decomposition [Owhadi-Zhang-Berlyand 2013] (Rough Polyharmonic Splines) [A. Gloria, S. Neukamm, and F. Otto, 2015] (quantification of ergodicity) [Hou and Liu, DCDS-A, 2016] [Chung-Efendiev-Hou, JCP 2016] [Owhadi, Multiresolution operator decomposition, SIREV 2017] [Owhadi, Zhang, gamblets for hyperbolic and parabolic PDEs, 2016] [Hou, Qin, Zhang, 2016] [Hou, Zhang, 2017] [Hou and Zhang, 2017]: Higher order PDEs (localization under strong ellipticity, h sufficiently small, and higher order polynomials as measurement functions) [Kornhuber, Peterseim, Yserentant, 2016]: Subspace decomposition

Subspace decomposition/correction and Schwarz iterative methods

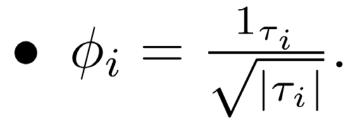
[J. Xu, 1992]: Iterative methods by space decomposition and subspace correction [Griebel-Oswald, 1995]: Schwarz algorithms

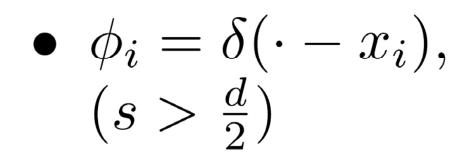
$$\mathcal{B} := H_0^s(\Omega) \qquad \|u\|^2 := [\mathcal{L}u, u]$$

 \mathcal{L} : arbitrary continuous positive symmetric linear bijection

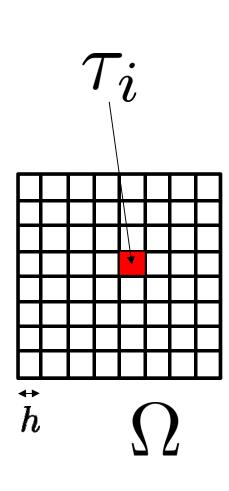
$$(H_0^s(\Omega), \|\cdot\|_{H_0^s(\Omega)}) \xrightarrow{\mathcal{L}} (H^{-s}(\Omega), \|\cdot\|_{H^{-s}(\Omega)})$$

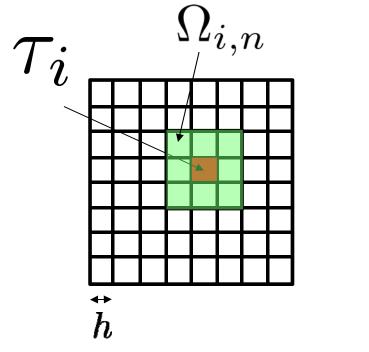
 \mathcal{L} is local $\langle u, v \rangle = 0$ if u and v have disjoint supports





• $(\phi_{i,\alpha})_{\alpha \in \square}$ forms an orthonormal basis of $\mathcal{P}_{s-1}(\tau_i)$



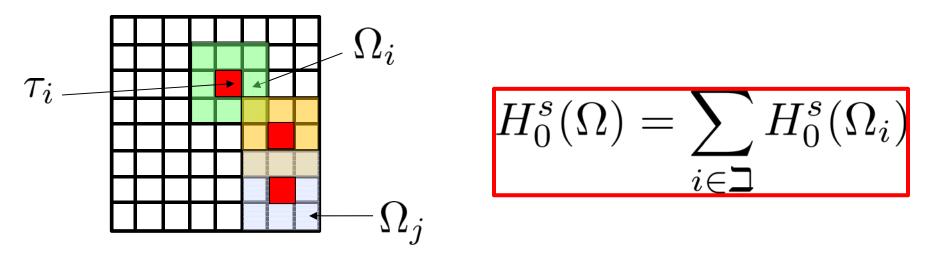


 $\operatorname{dist}(\tau_i, \partial \Omega_{i,n}) \approx nh$

$\psi_{i,\alpha}^n$: Localization of $\psi_{i,\alpha}$ to $\Omega_{i,n}$

Theorem

$$\|\psi_{i,\alpha} - \psi_{i,\alpha}^n\|_{H^s_0(\Omega)} \le Ce^{-n/C}$$



 $\Omega = \cup_i \Omega_i$

Condition for localization

For $\varphi \in H^{-s}(\Omega)$

$$C_{\min} \leq \frac{\sum_{i} \inf_{\phi \in \Phi} \|\varphi - \phi\|_{H^{-s}(\Omega_{i})}^{2}}{\inf_{\phi \in \Phi} \|\varphi - \phi\|_{H^{-s}(\Omega)}^{2}} \leq C_{\max}$$
$$\Phi = \{\phi_{i,\alpha} \mid (i, \alpha) \in \beth \times \aleph\}$$

Theorem

Assume that there exists a constant C_0 such that $|\aleph| \leq C_0$,

- $||D^t f||_{L^2(\Omega)} \leq C_0 h^{s-t} ||f||_{H^s_0(\Omega)}$ for $t \in \{0, 1, \dots, s\}$, for $f \in H^s_0(\Omega)$ such that $[\phi_{i,\alpha}, f] = 0$ for $(i, \alpha) \in \beth \times \aleph$,
- $\sum_{i \in \exists, \alpha \in \aleph} [\phi_{i,\alpha}, f]^2 \leq C_0 (\|f\|_{L^2(\Omega)}^2 + h^{2s} \|f\|_{H^s_0(\Omega)}^2),$ for $f \in H^s_0(\Omega)$, and
- $|x|^2 \leq C_0 h^{-2s} \| \sum_{\alpha \in \mathbb{N}} x_\alpha \phi_{i,\alpha} \|_{H^{-s}(\tau_i)}^2$, for $i \in \beth$ and $x \in \mathbb{R}^{\aleph}$.

Then for $\varphi \in H^{-s}(\Omega)$ $C_{\min} \leq \frac{\sum_{i} \inf_{\phi \in \Phi} \|\varphi - \phi\|_{H^{-s}(\Omega_{i})}^{2}}{\inf_{\phi \in \Phi} \|\varphi - \phi\|_{H^{-s}(\Omega)}^{2}} \leq C_{\max}$

Where C_{\max}, C_{\min} depend only on C_0, d, δ and s

Banach space setting

$$\mathcal{B} = \sum_{i \in \beth} \mathcal{B}_i$$

 $\|\cdot\|_i$ and $\|\cdot\|_{i,*}$ norms induced by $\|\cdot\|$ on \mathcal{B}_i and \mathcal{B}_i^*

Condition for localization

For $\varphi \in \mathcal{B}^*$

$$C_{\min} \leq \frac{\sum_{i} \inf_{\phi \in \Phi} \|\varphi - \phi\|_{i,*}^2}{\inf_{\phi \in \Phi} \|\varphi - \phi\|_*^2} \leq C_{\max}$$

$$\Phi = \{\phi_{i,\alpha} \mid (i,\alpha) \in \beth \times \aleph\}$$

Operator connectivity distance

 $C:\ \beth \times \beth$ connectivity matrix

 $C_{i,j} = 1$ if $\exists (\chi_i, \chi_j) \in \mathcal{B}_i \times \mathcal{B}_j$ s.t. $\langle \chi_i, \chi_j \rangle \neq 0$

 $C_{i,j} = 0$ otherwise

d: Graph distance on \beth induced by C

$$\psi_{i,\alpha}^n$$
: Localization of $\psi_{i,\alpha}$ to \mathcal{B}_i^n
 $\mathcal{B}_i^n = \bigcup_{j:\mathbf{d}(i,j) \leq n} B_i$

Theorem Under localization conditions

$$\|\psi_{i,\alpha} - \psi_{i,\alpha}^n\| \le Ce^{-n/C}$$

Thank you

- Universal Scalable Robust Solvers from Computational Information Games and fast eigenspace adapted Multiresolution Analysis, 2017. arXiv:1703.10761. H. Owhadi and C. Scovel.
- Compression, inversion, and approximate PCA of dense kernel matrices at near-linear computational complexity, Schäfer, Sullivan, Owhadi. 2017.
- Multigrid with gamblets. L. Zhang and H. Owhadi, 2017
- Gamblets for opening the complexity-bottleneck of implicit schemes for hyperbolic and parabolic ODEs/PDEs with rough coefficients, 2016. H. Owhadi and L. Zhang. arXiv:1606.07686
- Multigrid with rough coefficients and Multiresolution operator decomposition from Hierarchical Information Games. H. Owhadi. SIAM Review, 59(1), 99149, 2017. arXiv:1503.03467
- Towards Machine Wald (book chapter). Houman Owhadi and Clint Scovel. Springer Handbook of Uncertainty Quantification, 2016, arXiv:1508.02449.
- Bayesian Numerical Homogenization. H. Owhadi. SIAM Multiscale Modeling & Simulation, 13(3), 812828, 2015. arXiv:1406.6668

DARPA EQUiPS / AFOSR award no FA9550-16-1-0054 (Computational Information Games)

Florian Schäfer

Clint Scovel

Tim Sullivan

Lei Zhang

